Answer:
The best option is for the following option m = 15 [g] and V = 5 [cm³]
Explanation:
We have that the density of a body is defined as the ratio of mass to volume.

where:
Ro = density = 3 [g/cm³]
Now we must determine the densities with each of the given values.
<u>For m = 7 [g] and V = 2.3 [cm³]</u>
![Ro=7/2.3\\Ro=3.04 [g/cm^{3} ]](https://tex.z-dn.net/?f=Ro%3D7%2F2.3%5C%5CRo%3D3.04%20%5Bg%2Fcm%5E%7B3%7D%20%5D)
<u>For m = 10 [g] and V = 7 [cm³]</u>
<u />
<u />
<u>For m = 15 [g] and V = 5 [cm³]</u>
<u />
<u />
<u>For m = 21 [g] and V = 8 [cm³]</u>
<u />
<u />
Explanation:
A one-kilogram mass is still a one-kilogram(as mass is an intrinsic property of the object) but the downward force due to gravity, and therefore it's weight, is only one-sixth of what the object would have on the Earth. So man of mass 180 pounds weights only about 30 pounds-force when visiting the moon
hope it help..... pls add me as brainlist.
Have a nice day
The tension in the upper rope is determined as 50.53 N.
<h3>Tension in the upper rope</h3>
The tension in the upper rope is calculated as follows;
T(u) = T(d)+ mg
where;
- T(u) is tension in upper rope
- T(d) is tension in lower rope
T(u) = 12.8 N + 3.85(9.8)
T(u) = 50.53 N
Thus, the tension in the upper rope is determined as 50.53 N.
Learn more about tension here: brainly.com/question/918617
#SPJ1
PE= 3kg x 10N/kg x 10m
= 300J
Answer: n = c / v" "c" is the speed of light in a vacuum, "v" is the speed of light in that substance and "n" is the index of refraction. According to the formula, the index of refraction is the relation between the speed of light in a vacuum and the speed of light in a substance.
Explanation: the relation is the vacuum and the speed of light in a substance.