Hmmm...both seem beautiful, but if you're good at keeping them in then either on if fine, but buns make you seem elegant. While french braids make you look...I don't know...natural? But in my opinion, buns are easy to do and make people look good.
If you divide 68.5 km/h by 60 (the minutes in an hour) and then you get 1.141 then you multiply it by 5.45 and you get 6.222!
Your Answer is 6.222!!!!
As we presume that the fluid density is greater than the gas density based on common sense, the volume of the balloon decreases. The mass per unit volume is known as fluid density.
Greek letter stands in for and (rho). Mass per length squared, or M/L3, is the unit of measurement for density. Specific Weight vs. Weight Density: A fluid density, also known as specific density, is determined by dividing the fluid's weight by its volume. Weight per volume of a fluid is also referred to as weight density.
A mathematical term called "volume" describes how much three-dimensional space is occupied by an item or a closed surface. The measurement of volume is done in cubic units, like m3, cm3, in3, etc.
Learn more about fluid density here
brainly.com/question/24620628
#SPJ4
Answer:
Option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Explanation:
Normally, ignoring air resistance, for projectile motion, the range (horizontal distance teavelled) of the motion is given as
R = (u² sin 2θ)/g
where
u = initial velocity of the projectile = 20 m/s
θ = angle above the horizontal at which the projectile was launched = 30°
g = acceleration due to gravity = 9.8 m/s²
R = (30² sin 60°) ÷ 9.8
R = 78.53 m
So, Normally, the stone should travel a horizontal distance of 78.53 m. So, travelling a horizontal distance of 32 m (less than half of what the range should be without air resistance) means that, the motion of the stone was impeded, hence, option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Hope this Helps!!!
Answer:
Approximately
.
Explanation:
Make use of the fact that total momentum is conserved in collisions.
The momentum of an object of mass
and velocity
is
.
The momentum of the two trolleys before the collision would be:
.
.
Thus, the total momentum of the two trolleys right before the collision would be
.
Since the two trolleys are stuck to one another after the collision, they could modelled as one big trolley of mass
.
The momentum of the two trolleys, combined, is conserved during the collision. Thus, the total momentum of the new trolley of mass
would continue to be
shortly after the collision.
Rearrange the equation
to find the velocity of the two trolleys combined:
.