Answer: 72L of 30% and 128L of 80%
You can determine the weight of the acid by multiplying the concentration with the volume. Let say v1 is the volume of 30% solution needed and v2 is the volume of 80% solution.
The weight of acid from the used solution should be equal to the product. You can get this equation
final solution= solution1 + solution2
200l * 62%= v1 * 30% + v2*80%
124L= 0.3v1 + 0.8v2
124L- 0.3v1= 0.8v2
v2=155L- 0.375v1
The total volume of both should be 200l. If you use the previous equation, you can calculate:
v1+v2=200L
v1+ (155L- 0.375v1)= 200L
0.625v1= 200L - 155L
v1= 45/ 0.625= 72L
v1+v2=200L
v2= 200L- 72L= 128L
Answer:
look at the graph
Explanation:
We know that as temperature increases, solubility increases.So, when there is a rise in temperature, as more solute become dissolved, the saturation point will be lifted and more amount of solute will be needed to reach saturation.
Here, when the temperature was 20oC, 38 g of salt was needed for saturation. As the temperature is increased by 15oC, at 35oC more amount of salt was needed to reach saturation(45g). So a 15oC rise in temperature caused a 7 g rise in the amount of salt needed for saturation. So, if temperature is increased additionally through 10oC, an approximate 4.5 g of salt will be needed more to reach the saturation. That is at 45oC, the amount of salt at saturation will be approximately 49.5 g.
So, the temperature and solubility as well as temperature and amount of salt at saturation are linearly related(directly proportional)
I am not sure about this but I think it’s y