The correct answer is C. Colligative properties only depend upon the number of solute particles in a solution but not on the identity or nature of the solute and solvent particles. I hope this anwers your question.
Answer:
The correct option is;
A) 1 to 1.
Explanation:
A stab;e nuclei requires the presence of a neutron to accommodate the the protons repulsion forces within the nucleus. An increase in the number of protons should be accompanied by an even more instantaneous increase in the number of neutrons to balance the forces in the nucleus. If there is an excess of neutrons or a deficit in protons a state of unbalance exists in the nucleus, which results to nuclear instability.
Therefore, the ratio of neutrons to protons is an appropriate way in foretelling nuclear stability and a stable nuclei is known to have a proton to neutron ratio of 1:1 and the number of protons and neutrons in the stable nuclei are usually even numbers.
Correct Answer: The Sun heats the Earth unevenly; this heating pattern then causes convection currents in the atmosphere.
Answer:
The correct answer is - option D. the boiling point of solution A will be lower than the boiling point of solution B
Explanation:
Colligative properties such as a decrease in the freezing point of the solution, increase in the boiling point of substance, decrease in Lowering of vapor pressure, and other properties depend upon the number of molecules only.
In the given solution the equal amount of two solutions are mixed that is 50 grams however due to the difference in the molecular mass so the atoms present in both solution A and B will be different. It is known that the number of atoms of a substance is inversely proportional to the molecular mass of the particular substance.
As it is given that Solution B has a low molecular mass which means it has a high number of atoms that means its boiling point will be higher than solution A.
Answer:
C. 30 kJ
Explanation:
Hello there!
In this case, in agreement to the thermodynamic definition of the Gibbs free energy, in terms of enthalpy of entropy:

It is possible to calculate the required G by plugging in the given entropy and enthalpy as shown below:

Therefore, the answer is C. 30 kJ
.
Best regards!