Answer:
Solution A that will form a precipitate with Ksp = 2.3 x 10−4
Explanation:
Li₃PO₄ ⇄ 3 Li⁺(aq) + PO₄³⁻(aq)
3S S
Where S = Solubility(mole/lit) and Ksp = Solubility product
⇒ Ksp = (3S)³ x (S)
⇒ 27S⁴ = 2.3x10−4
⇒ S = 0.05 mol/lit
Concentration of Li₃PO₄ precipitate = 0.05
<u>Solution A </u>
0.500 lit of a 0.3 molar LiNO₃ contains 0.5 x 0.3 = 0.15 mole
0.4 lit of a 0.2 molar Na₃PO₄ contains = 3 x 0.4 x 0.2 = 0.24 mole
3 LiNO₃ + Na₃PO₄ → 3 NaNO₃ + Li₃PO₄
(Mole/Stoichiometry)

= 0.05 = 0.24
Since from (Mole/Stoichiometry) ratio we can conclude that LiNO₃ is limiting reagent.
So concentration of Li₃PO₄ is equal to 0.05.
D. With the same number of protons and different number of neutrons.
1. B
The positive charge in water is provided by hydrogen, and gold provides the same charge. However, gold is not more reactive than hydrogen so it can not replace it in the compound.
2. In order to balance the equation, you must sure there are equal moles of each element on the left and right side of the equation:
2C₂H₆ + 7O₂ → 4CO₂ + ₆H₂O
3. The number of moles of sodium atoms on the left of the equation must be equal to the number of moles of sodium atoms on the right, as per the law of conservation of mass. The answer is B.
4. C.
A synthesis reaction usually results from single displacement because some element or compound is produced in its pure form
5. B.
The gas being produced is being synthesized.
Answer:
See Explanation
Explanation:
According to the question, it is established that the pain caused by a lot of insect bites owes to the acidity of the insect bites.
If this is true, then there is an urgent need to neutralize the acidic insect bite using a basic substance.
Hence the pH of the creams used to treat insect bites should be basic(having a high pH).
2. The compound methene can not exist because it is supposed to be derived from the alkane called methane which contains only one carbon atom.
In order to form an alkene, there must be a double bond between two carbon atoms. This is not possible because there is only one carbon atom in the hypothetical methene. Hence, a compound named methene cannot exist.
A. Large atoms have valence electrons farther from the nucleus and lose them more readily, so they are more reactive than small atoms.
For example, the valence electron of a small atom like Li is tightly held. <em>Lithium gently fizzes</em> on the surface as it reacts with the water to produce hydrogen.
In contrast, the valence electron of a large atom like Cs is so loosely held that <em>cesium exlodes </em>on contact with water.