Answer:
See explaination
Explanation:
We can describe Aspiration Effect as a phenomenon of providing an allowance for the release of air from the mold cavity during the metal pouring.
See the attached file for detailed solution of the given problem.
Answer:
More Drag on the down going wing and More Lift on the up going wing
Explanation:
The autorotation spins of blades used in airborne wind energy technology sectors help drive and move the winds and water propeller-type turbines or shafts of generators to produce electricity at altitude and transmit the electricity to earth through conductive tethers.
Sometimes autorotation takes place in rotating parachutes, kite tails. Etc.
As a result, more Drag usually induces the autorotation spin characteristics of a straight-wing aircraft on the downgoing wing and More Lift on the up-going wing.
Answer:
Explanation gives the answer
Explanation:
% Using MATLAB,
% Matlab file : fieldtovar.m
function varargout = fieldtovar(S)
% function that accepts single structure as input, assigning each
% of the field values to user-defined variables
fields = fieldnames(S); % get the field names of the input structure
% check if number of user-defined variables and number of fields in
% structure are equal
if nargout == length(fields)
% if equal assign each value of structure to user-defined varable
for i=1:nargout
varargout{i} = getfield(S,fields{i});
end
else
% if not equal display an error message
error('The number of output variables does not equal the number of fields');
end
end
%This brings an end to the program
Answer:
1200KJ
Explanation:
The heat dissipated in the rotor while coming down from its running speed to zero, is equal to three times its running kinetic energy.
P (rotor-loss) = 3 x K.E
P = 3 x 300 = 900 KJ
After coming to zero, the motor again goes back to running speed of 1175 rpm but in opposite direction. The KE in this case would be;
KE = 300 KJ
Since it is in opposite direction, it will also add up to rotor loss
P ( rotor loss ) = 900 + 300 = 1200 KJ