Answer:
Both Technician A and B are correct.
Explanation: A brake lathe is a special tool used to improve or work on the surface of brake pads it helps to smoothen the surface.
Brake lathe has been found to be very effective in removing rusts in rotors and unevenness in the brake pad surfaces in order to ensure the efficiency and effectiveness of the brake system of a vehicle. Hence, a brake lathe helps to make brake rotor surface as smooth as possible.
Answer:
A.
The power generated by a wind farm is not constant because of irregular wind patterns.
Answer:
a) The mechanical force is -226.2 N
b) Using the coenergy the mechanical force is -226.2 N
Explanation:
a) Energy of the system:



If i = 2A and g = 10 cm


b) Using the coenergy of the system:

Answer:
471 days
Explanation:
Capacity of Carvins Cove water reservoir = 3.2 billion gallons i.e. 3.2 x 10˄9 gallons
As,
1 gallon = 0.133 cubic feet (cf)
Therefore,
Capacity of Carvins Cove water reservoir in cf = 3.2 x 10˄9 x 0.133
= 4.28 x 10˄8
Applying Mass balance i.e
Accumulation = Mass In - Mass out (Eq. 01)
Here
Mass In = 0.5 cfs
Mass out = 11 cfs
Putting values in (Eq. 01)
Accumulation = 0.5 - 11
= - 10.5 cfs
Negative accumulation shows that reservoir is depleting i.e. at a rate of 10.5 cubic feet per second.
Converting depletion of reservoir in cubic feet per hour = 10.5 x 3600
= 37,800
Converting depletion of reservoir in cubic feet per day = 37, 800 x 24
= 907,200
i.e. 907,200 cubic feet volume is being depleted in days = 1 day
1 cubic feet volume is being depleted in days = 1/907,200 day
4.28 x 10˄8 cubic feet volume will deplete in days = (4.28 x 10˄8) x 1/907,200
= 471 Days.
Hence in case of continuous drought reservoir will last for 471 days before dry-up.
Answer:
a) 
b) 
c) 
d) 
Explanation:
Non horizontal pipe diameter, d = 25 cm = 0.25 m
Radius, r = 0.25/2 = 0.125 m
Entry temperature, T₁ = 304 + 273 = 577 K
Exit temperature, T₂ = 284 + 273 = 557 K
Ambient temperature, 
Pipe length, L = 10 m
Area, A = 2πrL
A = 2π * 0.125 * 10
A = 7.855 m²
Mass flow rate,

Rate of heat transfer,

a) To calculate the convection coefficient relationship for heat transfer by convection:

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.
c) The surface temperature of the pipe:
Smear coefficient of the pipe, 

b) Heat loss from the pipe to the environment:

d) The required fan control power is 25.125 W as calculated earlier above