Answer:
h = 375 KW/m^2K
Explanation:
Given:
Thermo-couple distances: L_1 = 10 mm , L_2 = 20 mm
steel thermal conductivity k = 15 W / mK
Thermo-couple temperature measurements: T_1 = 50 C , T_2 = 40 C
Air Temp T_∞ = 100 C
Assuming there are no other energy sources, energy balance equation is:
E_in = E_out
q"_cond = q"_conv
Since, its a case 1-D steady state conduction, the total heat transfer rate can be found from Fourier's Law for surfaces 1 and 2
q"_cond = k * (T_1 - T_2) / (L_2 - L_1) = 15 * (50 - 40) / (0.02 - 0.01)
=15KW/m^2
Assuming SS is solid, temperature at the surface exposed to air will be 60 C since its gradient is linear in the case of conduction, and there are two temperatures given in the problem. Convection coefficient can be found from Newton's Law of cooling:
q"_conv = h * ( T_∞ - T_s ) ----> h = q"_conv / ( T_∞ - T_s )
h = 15000 W / (100 - 60 ) C = 375 KW/m^2K
Answer:
Outdoors
Explanation:
Construction workers perform outdoors.
Answer:
sum2 = 0
counter = 0
lst = [65, 78, 21, 33]
while counter < len(lst):
sum2 = sum2 + lst[counter]
counter += 1
Explanation:
The counter variable is initialized to control the while loop and access the numbers in <em>lst</em>
While there are numbers in the <em>lst</em>, loop through <em>lst</em>
Add the numbers in <em>lst</em> to the sum2
Increment <em>counter</em> by 1 after each iteration