Answer:
x^4 + 8x
-----------------
(4-x^3)^2
Step-by-step explanation:
d /dx (x^2/(4-x^3))
When we differentiate a fraction u/v
df/dx = u/v
= v du/dx-u dv/dx
---------------------------
v^2
we know u = x^2 so du/dx = 2x
v = (4-x^3) so dv/dx = -3x^2
d dx = (4-x^3) (2x)- x^2 ( -3x^2)
-------------------------------------
(4-x^3)^2
Combining terms
(8x-2x^4) --3x^4
-------------------------------------
(4-x^3)^2
8x-2x^4 +3x^4
-------------------------------------
(4-x^3)^2
x^4 + 8x
-------------------------------------
(4-x^3)^2
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form y=kx
where
k is the constant of proportionality
Verify each table
table a
Let
x ----> distance
y ----> sound level
For each ordered pair calculate the value of k
k=y/x
so
(5,85) -----> k=85/5=17
(10,79) ----> k=79/10=7.9
the values of k are differents
that means
the table nor represent a proportional relationship
table b
let
x ----> volume
y ----> cost
k=y/x
(16,1.49) ----> k=1.49/16=0.093125
(20,1.59) ----> k=1.59/20=0.0795
the values of k are differents
that means
the table nor represent a proportional relationship
Answer:
5
Step-by-step explanation:
According to the described rule, we have

We can see the pattern

In other words, for all 

Now,
