1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
4 years ago
6

The car has a mass of 1.6 Mg and center of mass at G. If the coefficient of static friction between the shoulder of the road and

the tires is μs = 0.41, determine the greatest slope θ the shoulder can have without causing the car to slip or tip over if the car travels along the shoulder at constant velocity.

Physics
1 answer:
Rufina [12.5K]4 years ago
6 0

Answer:

\theta = 22.29

Explanation:

Taking summation of force at perpendicular  to the plane

\sum F_p = 0

2N_A +2N_B -mgcos\theta = 0

N_A +N_B - mgcos\theta = 0

N_A +N_B = mgcos\theta

Taking summation along the plane, therefore we have

\sum Fa = 0

f_A +f_B -mgsin\theta = 0  

\mu N_A+\mu N_B - mgsin\theta = 0

\mu(N_A +N_B) = mgcos\theta

from equation 1 and 2 we have

\mu =\frac{sin\theta}{cos\theta}

\mu = 0.41

\mu = tan\theta

\theta = tan^{-}\mu

\theta = 22.29

You might be interested in
An airplane touches down on the runway with a speed of 70 m/s2. Determine the airplane after each second of its deceleration.
ivann1987 [24]
<span>vf^2 = vi^2 + 2*a*d
---
vf = velocity final
vi = velocity initial
a = acceleration
d = distance
---
since the airplane is decelerating to zero, vf = 0
---
0 = 55*55 + 2*(-2.5)*d
d = (-55*55)/(2*(-2.5))
d = 605 meters


</span>
5 0
3 years ago
The best rebounders in basketball have a vertical leap (that is, the vertical movement of a fixed point on their body) of about
nadya68 [22]

Answer:

a) 4.45 m/s

b) 0.9 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -9.81\times 1}\\\Rightarrow u=4.45\ m/s

a) The vertical speed when the player leaves the ground is 4.45 m/s

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{0-4.45}{-9.81}\\\Rightarrow t=0.45\ s

Time taken to reach the maximum height is 0.45 seconds

s=ut+\frac{1}{2}at^2\\\Rightarrow 1=0t+\frac{1}{2}\times 9.81\times t^2\\\Rightarrow t=\sqrt{\frac{1\times 2}{9.81}}\\\Rightarrow t=0.45\ s

Time taken to reach the ground from the maximum height is 0.45 seconds

b) Time the player stayed in the air is 0.45+0.45 = 0.9 seconds

6 0
3 years ago
An electron in a mercury atom drops
aksik [14]

Since the electron dropped from an energy level i to the ground state by emitting a single photon, this photon has an energy of 1.41 × 10⁻¹⁸ Joules.

<h3>How to calculate the photon energy?</h3>

In order to determine the photon energy of an electron, you should apply Planck-Einstein's equation.

Mathematically, the Planck-Einstein equation can be calculated by using this formula:

E = hf

<u>Where:</u>

  • h is Planck constant.
  • f is photon frequency.

In this scenario, this photon has an energy of 1.41 × 10⁻¹⁸ Joules because the electron dropped from an energy level i to the ground state by emitting a single photon.

Read more on photons here: brainly.com/question/9655595

#SPJ1

4 0
2 years ago
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
3 years ago
What value do we use to describe acceleration due to gravity
andrey2020 [161]

Answer:

9.8 m/s2

Explanation:

In the first equation above, g is referred to as the acceleration of gravity. Its value is 9.8 m/s2 on Earth. That is to say, the acceleration of gravity on the surface of the earth at sea level is 9.8 m/s2.

Got it from the internet, hope it helps though ^^

7 0
3 years ago
Other questions:
  • I need help fast!!!
    6·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 9 km/s and a frequency of 2 Hz?
    10·1 answer
  • A ball is thrown into the air with 100 J of kinetic energy, which is transformed to gravitational potential energy
    14·1 answer
  • I WILL GIVE BRAINLIEST!!!!!!!!
    12·1 answer
  • An object moving at a constant velocity will always have a what
    10·2 answers
  • The rate at which velocity changes is called
    11·1 answer
  • a man of mass 50 kg climbs up stairs each of height 0.2 m in 20 seconds .calculate the power of the man​
    15·1 answer
  • A 1900 kg sports car is traveling 12.0 m/s. It accelerates to 45 m/s in 3.6 seconds. Calculate the force AND impulse impulse of
    10·1 answer
  • WhT is marasmus my followers and following pls give answer in detail ​
    12·2 answers
  • Based on the law of conservation of mass, if approximately 20g of water reacts in the following equation,
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!