Answer: 0.5 m
Explanation:
Given
Mass of the person is 
Trampoline launches the person into the air up to height of 
Force experience by springs is 
Here, the work done on displacing the springs is equivalent to the Potential energy acquired by the person i.e.
![\Rightarrow F\cdot x=mgh\quad [\text{x=displacement of the trampoline}]\\\\\text{Insert the values}\\\\\Rightarrow x=\dfrac{50\times 9.8\times 2}{1960}\\\\\Rightarrow x=\dfrac{980}{1960}\\\\\Rightarrow x=0.5\ m](https://tex.z-dn.net/?f=%5CRightarrow%20F%5Ccdot%20x%3Dmgh%5Cquad%20%5B%5Ctext%7Bx%3Ddisplacement%20of%20the%20trampoline%7D%5D%5C%5C%5C%5C%5Ctext%7BInsert%20the%20values%7D%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B50%5Ctimes%209.8%5Ctimes%202%7D%7B1960%7D%5C%5C%5C%5C%5CRightarrow%20x%3D%5Cdfrac%7B980%7D%7B1960%7D%5C%5C%5C%5C%5CRightarrow%20x%3D0.5%5C%20m)
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
Answer:
The value is 
Explanation:
From the question we are told that
The molar mass of hydrazine is 
The initial temperature is 
The final temperature is 
The specific heat capacity is ![c_h = 0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)](https://tex.z-dn.net/?f=c_h%20%20%3D%20%200.099%20%5BkJ%2F%28mol%20K%29%5D%20%3D%200.099%20%2A10%5E3%20J%2F%28mol%2FK%29)
The power available is 
The mass of the fuel is 
Generally the number of moles of hydrazine present is

=> 
=> 
Generally the quantity of heat energy needed is mathematically represented as
=>
=>
Generally the time taken is mathematically represented as

=> 
=> t = 2480505.6377 s
Converting to hours

=> 
The answer is d. Wavelength