Electrons are a stable sub atomic particle that has a negative charge and is found in all atoms and is the main carrier of electricity through solids.
In a metal, some of the electrons can escape from the atoms and are free to move around inside the metal. These electrons are referred to as 'conduction electrons'.
<span>A current is a flow of charge. In metal a current is the flow of the conduction electrons through the metal. This can occur when connected to battery for example: The battery pumps the conduction electrons around the circuit. </span>
The voltage exists between the fence and the ground. The cow is grounded. The cow is touching the ground, completing the circuit of electricity. <span>When the cow comes into contact with the fence, it becomes an electric ground which sends an electric current into the cow, through the cow, and into the ground. The pain experienced from the shock is due to the current that flows through the cow.</span>
Force=mass x acceleration
f= 0.5 x40
f=20N
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.