Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
Answer:
Los 0.0416km
esto se debe a que transponemos la fórmula acelerada y obtenemos Distancia = velocidad × tiempo
también recuerda transponer los segundos a horas viendo que la velocidad es por hora
También tenga en cuenta que no hablo español, así que esto fue extremadamente difícil
culto
Answer:
E = 10t^2e^-10t Joules
Explanation:
Given that the current through a 0.2-H inductor is i(t) = 10te–5t A.
The energy E stored in the inductor can be expressed as
E = 1/2Ll^2
Substitutes the inductor L and the current I into the formula
E = 1/2 × 0.2 × ( 10te^-5t )^2
E = 0.1 × 100t^2e^-10t
E = 10t^2e^-10t Joules
Therefore, the energy stored in the inductor is 10t^2e^-10t Joules
Answer:
The banking angle is 23.84 degrees.
Explanation:
Given that,
Radius of the curve, r = 194 m
Speed of the car, v = 29 m/s
On the banked curve, the centripetal force is balanced by the force of friction such that,




So, the banking angle is 23.84 degrees. Hence, this is the required solution.