1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bija089 [108]
3 years ago
5

Two forces F1 and F2 act on a 5.00 kg object. Taking F1=20.0N and F2=15.00N, find the acceleration of the object for the configu

rations:
a) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction

b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal.

Physics
2 answers:
Anit [1.1K]3 years ago
8 0
A) mass m with F1 acting in the positive x direction and F2 acting perpendicular in the positive y direction<span>

m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... y direction

Net force ^2 = F1^2 + F2^2 = (20N)^2 + (15n)^2 =  625N^2 =>

Net force = √625 = 25N

F = m*a => a = F/m = 25.0 N /5.00 kg = 5 m/s^2

Answer: 5.00 m/s^2

b) mass m with F1 acting in the positive x direction and F2 acting on the object at 60 degrees above the horizontal. </span>

<span>m = 5.00 kg
F1=20.0N  ... x direction
F2=15.00N</span><span>  ... 60 degress above x direction

Components of F2

F2,x = F2*cos(60) = 15N / 2 = 7.5N

F2, y = F2*sin(60) = 15N* 0.866 = 12.99 N ≈ 13 N


Total force in x = F1 + F2,x = 20.0 N + 7.5 N = 27.5 N

Total force in y = F2,y = 13.0 N

Net force^2 = (27.5N)^2 + (13.0N)^2 = 925.25 N^2 = Net force = √(925.25N^2) =

= 30.42N

a = F /m = 30.42 N / 5.00 kg = 6.08 m/s^2

Answer: 6.08 m/s^2


</span>
zavuch27 [327]3 years ago
8 0

a) The acceleration of the block for the first configuration is \boxed{5\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^2}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^2}}}}.

b) The acceleration of the block for the second configuration is  \boxed{6.08\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}}.

Further Explanation:

Given:

The magnitude of force {F_1} is 20.0\,{\text{N}}.

The magnitude of force {F_2} is 15.0\,{\text{N}}.

The mass of the object is 5.0\,{\text{kg}}.

Concept:

<u>Part (a):</u>

The situation in which the {F_1} acts in positive X direction and {F_2} in the positive Y direction is as shown in figure attached below.

Since the two forces are perpendicular to each other, the net force acting on the object will be:

\begin{aligned}{F_{net}}&=\sqrt{{{\left( {{F_1}} \right)}^2} + {{\left( {{F_2}}\right)}^2}}\\ &=\sqrt {{{\left( {20}\right)}^2} + {{\left( {15} \right)}^2}}\\ &= 25\,{\text{N}}\\\end{aligned}

The angle at which the net force acts on the object is:

\begin{aligned}\theta&= {\tan ^{ - 1}}\left( {\frac{{{F_2}}}{{{F_1}}}} \right)\\&={\tan ^{ - 1}}\left({\frac{{15}}{{20}}} \right)\\&=36.86^\circ\\\end{aligned}

The acceleration of the object under the action of the net force is given by:

\boxed{a=\dfrac{{{F_{net}}}}{m}}

Substitute the values in above expression.

\begin{aligned}a&= \frac{{25}}{5}\,{{\text{m}}\mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}}\right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}\\&= 5\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}\\\end{aligned}

Thus, the acceleration of the object in the first configuration is \boxed{5\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}} at an angle of 36.86^\circ from horizontal.

<u>Part (b):</u>

In the second configuration as shown in the figure attached below, the force {F_2} is resolved into its horizontal and vertical components as follows:

\begin{aligned}{F_{2x}}&= {F_2}\cos 60\\&=7.5\,{\text{N}}\\\end{aligned}

\begin{aligned}{F_{2y}}&= {F_2}\sin60\\&= 13\,{\text{N}}\\\end{aligned}

The net force in the horizontal direction and the vertical direction are:

\begin{aligned}{F_x}&= {F_1} + {F_{2x}}\\&= 20 + 7.5\,{\text{N}}\\&= 27.5\,{\text{N}}\\\end{aligned}

Thus, the resultant force acting on the object will be:

\begin{aligned}{F_{net}}&=\sqrt {{{\left({{F_x}} \right)}^2}+{{\left( {{F_y}} \right)}^2}}\\&=\sqrt {{{\left( {27.5}\right)}^2}+{{\left( {13} \right)}^2}}\\&= 30.42\,{\text{N}}\\\end{aligned}

The angle at which the net force acts on the object is:

\begin{aligned}\theta&= {\tan ^{ - 1}}\left( {\frac{{{F_y}}}{{{F_x}}}}\right)\\&={\tan ^{ - 1}}\left({\frac{{13}}{{27.5}}} \right)\\&= 25.30^\circ\\\end{aligned}

The acceleration of the object under the action of the net force is given by:

\boxed{a =\frac{{{F_{net}}}}{m}}

Substitute the values in above expression.

\begin{aligned}a&= \frac{{30.42}}{5}\,{{\text{m}}\mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}\\&= 6.08\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace}{{{\text{s}}^{\text{2}}}}}\\\end{aligned}

Thus, the acceleration of the object in the first configuration is \boxed{6.08\,{{\text{m}} \mathord{\left/{\vphantom {{\text{m}} {{{\text{s}}^{\text{2}}}}}} \right.\kern-\nulldelimiterspace} {{{\text{s}}^{\text{2}}}}}} at an angle of 25.30^\circ from horizontal.

Learn More:

1. A 30.0-kg box is being pulled across a carpeted floor by a horizontal force of 230 N brainly.com/question/7031524

2. Choose the 200 kg refrigerator. Set the applied force to 400 n (to the right). Be sure friction is turned off brainly.com/question/4033012

3. Which of the following is not a component of a lever brainly.com/question/1073452

Answer Details:

Grade: High School

Subject: Physics

Chapter: Newton’s Law of Motion

Keywords:

Two forces, 5.0 kg object, acceleration of the object,F1=20 N, F2=15 N, for the configurations, net force, horizontal direction, vertical direction, perpendicular.

You might be interested in
A person should be able to find all the answers to their science questions in the text
Vsevolod [243]
TRUE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 0
3 years ago
Read 2 more answers
PLS HELP!!! WILL GIVE BRAINLIEST
grandymaker [24]

Answer:

did you ever get the answer

8 0
2 years ago
Read 2 more answers
A primary advantage of composite materials is: (choose all that apply). 1.) high strength 2.) low weight 3.) ease of constructio
icang [17]

Answer:

primary advantage of composite material are high strength, low weight, corrosion resistance

Explanation:

The primary advantage of composite material is

1) high strength - they are stronger in strength than commanly used material like steel and aluminium.

2)low weight - lighter than most of the material like woods and others metals

3) corrosion resistance - it resist extreme condition of weather and can be good place where handling of chemicals takes place.

4 0
3 years ago
Where else could Snell’s law be useful in determining the path of a light ray in your everyday life?
Musya8 [376]

Answer:

Contact glasses.

Explanation:

-Anytime you put on a pair of glasses, or see light bend through a glass of water or a prism, this rule is in action.

-In short, Snell's law governs the angle by which electromagnetic radiation such as light refracts, or changes direction, as it passes from one material to another and slows down.

6 0
4 years ago
A symbol on a compass or map that is circular with graded points for the direction is commonly known as a _________. question 13
son4ous [18]

Answer;

-Compass Rose

A symbol on a compass or map that is circular with graded points for the direction is commonly known as a compass rose.

Explanation;

The Earth is a magnet that can interact with other magnets such that, the north end of a compass magnet is drawn to align with the Earth's magnetic field.

A compass rose is a figure on a compass, map, nautical chart, or monument used to display the orientation of the cardinal directions (north, east, south, and west) and their intermediate points. It is a feature on a map that also tells people what direction to go to find certain places on the map

7 0
3 years ago
Read 2 more answers
Other questions:
  • A mass spectrometer was used in the discovery of the electron. In the velocity selector, the electric and magnetic fields are se
    11·1 answer
  • Can I get some help please?
    12·1 answer
  • I can not find the answer to the one after potassium ?
    11·1 answer
  • The force it would take to accelerate a 900-kg car at a rate of 3 m/s2 is
    10·2 answers
  • What would happen to the speed of a sound wave if it moved from a cooler room to a warmer one
    9·2 answers
  • Why are units of measurement useful?
    13·1 answer
  • A person makes a cup of coffee by first placing a 200 W electric immersion heater in 0.32 kg
    6·1 answer
  • Answer pls urgent pls​
    5·2 answers
  • When forklift moves a crate, it performs _______.
    12·2 answers
  • Which element is MOST LIKELY to be dull?<br> carbon<br> aluminum<br> mercury<br> sodium
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!