By compressing the spring a distance <em>x</em> (in m), you are storing 1/2 <em>k</em> <em>x</em> ² (in J) of potential energy, which is converted completely into kinetic energy 1/2 <em>m v</em> ², where
• <em>k</em> = 40 N/m = spring constant
• <em>m</em> = 10 kg = mass of the ball
• <em>v</em> = 2 m/s = ball's speed (at the moment the spring returns to its equilibrium point)
So we have
1/2 <em>k</em> <em>x</em> ² = 1/2 <em>m</em> <em>v</em> ²
<em>x</em> = √(<em>m</em>/<em>k</em> <em>v</em> ²) = √((10 kg) / (40 N/m) (2 m/s)²) = 1 m
In order to persuade the electrons in the wire to flow, you need
a potential difference between the ends of the wire. Then the
electrons will want to get away from the more-negative end and
go to the more-positive end. If both ends of the wire are at the
same potential, then the electrons have no reason to go anywhere,
and they just stay where they are.
Choice-d says this.
Answer:
lose, higher
Explanation:
An aircraft lose altitude when flying from a region of higher temperature to a region of cooler temperature, hence making the reading on the altimeter to be high.