Complete question:
Two parallel 3.0-meter long wires conduct current. The current in the top wire is 12.5 A and flows to the right. The top wire feels a repulsive force of 2.4 x 10^-4 N created by the interaction of the 12.5 A current and the magnetic field created by the bottom current (I). Find the magnitude and direction of the bottom current, if the distance between the two wires is 40cm.
Answer:
The bottom current is 12.8 A to the right.
Explanation:
Given;
length of the wires, L = 3.0 m
current in the top wire, I₁ = 12.5 A
repulsive force between the two wires, F = 2.4 x 10⁻⁴ N
distance between the two wires, r = 40 cm = 0.4 m
The repulsive force between the two wires is given by;

Where;
I₂ is the bottom current
The direction of the bottom current must be in the same direction as the top current since the force between the two wires is repulsive.

Therefore, the bottom current is 12.8 A to the right.
D = 40.5 g / 15.0 mL<span>d = 2.70 g/mL</span>
Answer:
This process is known as static electricity
Explanation:
When balloon is rubbed on the wool , a negative charge is usually formed. When the balloon is then held over—but not touching—some bits of paper, some of the bits jump up to the balloon. The bits which jump up to the balloon are positive charged and we know that unlike charges attract.
This process explains static electricity which is when the charges on a material are not in a balanced state.
Power = Force * Distance/ time
P = 1,250 * 2/3
P = 2,500/3
P = 833.33 Watts
So, your final answer is 833.33 Watts
To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

Here,
I = Current
L = Length
B = Magnetic Field
= Angle between Force and Magnetic Field
But 

Rearranging to find the Magnetic Field,

Here the force per unit length,

Replacing with our values,


Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T