A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction can be defined as a chemical reaction in which one reactant breaks down into two or more products.
- Step 1: Write the balanced equation for the decomposition of KHCO₃.
2 KHCO₃(s) → K₂CO₃(s) + CO₂(g) + H₂O(l)
The mass loss of 0.275 g is due to the gaseous CO₂ that escapes the sample.
- Step 2: Calculate the mass of KHCO₃ that formed 0.275 g of CO₂.
In the balanced equation, the mass ratio of KHCO₃ to CO₂ is 200.24:44.01.
0.275 g CO₂ × 200.24 g KHCO₃/44.01 g CO₂ = 1.25 g KHCO₃
- Step 3: Calculate the mass percentage of KHCO₃ in the sample.
There are 1.25 g of KHCO₃ in the 1.775 g sample.
%KHCO₃ = 1.25 g/1.775 g × 100% = 70.4%
A 1.775g sample mixture of KHCO₃ is decomposed by heating. if the mass loss is 0.275g, the mass percentage of KHCO₃ is 70.4%.
Learn more about decomposition reactions here: brainly.com/question/14219426
Answer:
I think it was Hillary Clinton.
Explanation:
Grasslands are areas where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on earth and dominate the landscape worldwide.[1] They cover 31-43% of the Earth's land area. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands.[1]
Answer:
C is the only reasonable answer.. but this is 6th grade science and I'm in 7th, so I'm pretty sure I'm right
Answer:
The correct answer is -all of the above.
Explanation:
Muscle fatigue is a reduced ability in work capacity caused by work itself. It is known that altering oxygen is contracting skeletal muscle affects performance. Reduced O2 supply increases the rate of muscle fatigue.
The lactic acid is accumulated as it forms rapidly but the breaking of the lactic acid is slow down, which causes muscle fatigue. Less ATP and glycogen in muscle results in fatigue as the muscle is not able to generate energy to power contractions and therefore contributes to muscle fatigue.