Answer:
Option 1
Explanation:
Option number 1 is the most compact one which indicates it is a solid
If reactants eventually collide,
there is an occurrence of reaction.
<span>
Therefore, when there is an increase concentration of
reactant, meaning to say that there are several moles of it every unit volume. An
example of this is a room having hundred of people will absolutely get higher
concentration compared to a room with one individual only.
Pertaining to effective collisions, if ever there is an
increase of concentration, the frequency and rate of effective collisions among
reactants surges in such a way that the rate of reaction also surges. Same with
passing into a room with only 1 individual compared to hundred people blind
persons, you probably want to proceed to the room with several people.</span>
<span>This is the simple logic
behind that scientific existence.</span>
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl