Here I found some info at Yahoo answers: https://answers.yahoo.com/question/index?qid=20090119191941AAB7oAb
The more electronegative an atom is the more unwilling it is to lose its electrons in a compound. If you do try to take a very EN atom away from a compound you'll need to apply a lot of energy for that to happen. I can give an example of a single atom though
<span>Cl has 7 valence electron filled and every atom wants to be like nobles (noble gases), so it's not going to give an electron away b/c it's really close to being like a noble gas. Noble gases are the most stable atoms, which is why I say stability counts.</span>
Answer is: glycerol because it is more viscous and has a larger molar mass.
Viscosity depends on intermolecular interactions.
The predominant intermolecular force in water and glycerol is hydrogen bonding.
Hydrogen bond is an electrostatic attraction between two polar groups in which one group has hydrogen atom (H) and another group has highly electronegative atom such as nitrogen (like in this molecule), oxygen (O) or fluorine (F).
Answer:
The number, such as 98.7 FM, of a radio station represents:
- <u>the frequency in which is transmitted the radio signal</u>.
Explanation:
<em>The radio FM is the modulated frequency, which means that all the information is sent by just a signal, with different frequencies which difference them</em>, <u>the radio FM use the frequencies from 88 MHz until 108 Mhz (MHz is a measuring unit for the frequency), with a minimal space among them of 0.2 MHz</u>, this last means that you could find a signal in 88.0 MHz, and the next should be 88.2 MHz, next 88.4 MHz and so (at least, regularly the space between two frequencies is more than 0.2 MHz).
The change in the standard Gibbs free energy (ΔGº) for the dissociation of nitrous acid (HNO2) at 298 K is 19.09 kJ. If the pH of the solution after equilibrium is reached is 1.30 and the NO2 – concentration at equilibrium is 0.00060 M. What is the equilibrium concentration of HNO2? Hint: Use pH to determine the equilibrium concentration of H+ .
HNO2(aq) H + (aq) + NO2 – (aq)