Answer:
Explanation:
Total heat = Work done = Force × distance
distance = 0.075 × 12 = 0.9 m
W = 45 × 0.9 = 40.5 joules
Specific heat of the human hand = 3.5 kj/kg = 3.5 j/g
Q = MCΔT
ΔT = (Q) ÷ (MC)
ΔT = 40.5 ÷ (3.5 × 1) = 11.57°C
First, you make a diagram of all the forces acting on the system. This is shown in the figure. We have to determine F1 and F4. Let's do a momentum balance. Momentum is conserved so the summation of all momentum is equal to zero. Momentum is force*distance.
To determine F1: (reference is F4, so F4=0)
∑Momentum = 0 = -F2 - F3 + F1
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.3m)+F1(0.5-0.1m)
F1 = 53.96 N (left knife-edge)To determine F4: (reference is F1, so F1=0)
∑Momentum = 0 = -F2 - F3 + F4
0 = (-4 kg)(9.81 m/s2)(0.25m)-(6kg)(9.81 m/s2)(0.5-0.2m)+F4(0.5-0.1m)
F4 = 68.67 N (right knife-edge)
Answer:
Explanation:
The formula for hydrogen atomic spectrum is as follows
energy of photon due to transition from higher orbit n₂ to n₁

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 , ... etc
energy of first line

10.2 eV
wavelength of photon = 12375 / 10.2 = 1213.2 A
energy of 2 nd line

= 12.08 eV
wavelength of photon = 12375 / 12.08 = 1024.4 A
energy of third line

12.75 e V
wavelength of photon = 12375 / 12.75 = 970.6 A
energy of fourth line

= 13.056 eV
wavelength of photon = 12375 / 13.05 = 948.3 A
energy of fifth line

13.22 eV
wavelength of photon = 12375 / 13.22 = 936.1 A
Answer:
The correct answer is = 1.6
Explanation:
Density of water = 1000kg/m³ = d₁
Mass of brick = 4kg = m
Density of brick = 2.5 g/cm³ = 2.5 × 1000 =2500 kg/m³ = d₂
Volume of brick = m/d₂ = 4/2500 =16/10000 = 0.0016 L = v
Buoyant Force = v × d₁ × g (g= acceleration due to gravity =9.8m/s²)
= 0.0016 × 1000 × 9.8 = 15.68 Newtons
By the Archimedes' Principle, the buoyant force is equal to the weight of the liquid displaced by an object.
Weight of the water displaced=Buoyant Force
=Mass of water displaced × g,
as weight = mass × acceleration due to gravity
15.68= mass of brick × 9.8
15.68/9.8 =Mass of water displaced
1.6 kg = Mass of water displaced