Answer:
8.5m/s
Explanation:
We are given that
Mass of object=m=0.50 kg
Initial velocity, u=0
Force=F=2.88 N
Time=1.48 s
a.We know that

Using the formula



Using the formula


Hence, the velocity of the object at the end of this time interval=8.5m/s
Well latent fingerprints are made of oil and sweat and generally materials that you can't see very easily, so it should be that.
Hope this helps :D
We have volume of gasoline = 14.0 gallon
Time taken to fill automobile tank = 1.50 minutes
So volume rate = 14.0 gallon/1.50 minutes = 9.33 gallon/ minute
We have density of gasoline = 0.77 kg/L = 6.073 lb/US gal
Mass rate = Density * Volume rate
= 9.33 gallon/ minute*6.073 lb/US gal = 56.68 lb/min
So mass flow rate delivered by the gasoline pump in lbm/min = 56.68
This question can be solved by using the equations of motion.
a) The initial speed of the arrow is was "9.81 m/s".
b) It took the arrow "1.13 s" to reach a height of 17.5 m.
a)
We will use the second equation of motion to find out the initial speed of the arrow.

where,
vi = initial speed = ?
h = height = 35 m
t = time interval = 2 s
g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>vi = 9.81 m/s</u>
b)
To find the time taken by the arrow to reach 17.5 m, we will use the second equation of motion again.

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 17.5 m
vi = initial speed = 9.81 m/s
t = time = ?
Therefore,

solving this quadratic equation using the quadratic formula, we get:
t = -3.13 s (OR) t = 1.13 s
Since time can not have a negative value.
Therefore,
<u>t = 1.13 s</u>
Learn more about equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion in the horizontal and vertical directions.
When an astronaut travels from the earth to the moon, her weight changes, but her mass remains constant. <em>(C ).</em>