From a to b speed is 600+40 = 640
from b to a speed is 600-40 = 560
let t be the number of hours of flight. This would mean it would have traveled a distance of 640 miles and the distance yet to travel is 2400-640t
Time left will be (2400-640t)/640. But if they were to return to a it would fly 640t miles at 560mph which will take (640t/560) hrs
(2400-640t) / 640 = 640t / 560
560(2400 - 640t) = 640t x 640
t = 1.75hrs
Answer:
Stationary
20N
Explanation:
From the graph, we see that the body traveling is on a fixed position. Therefore, it is a stationary body.
The graph given is a position - time curve.
This curve depict a body changing position with given time.
Since the line of the curve is on a single position, the body is not changing position with the passage of time therefore, it is a stationary object.
B. 20N
From Newton's third law of motion we understand that "action and reaction force are equal but oppositely directed".
Since the person is exerting a force of 20N on the balance.
So, the reaction force by the balance is 20N upward.
The potential energy= mass times gravity times height. However, we are missing height. Gravity is a constant that is 9.8 on Earth. We then solve for height by dividing 350 by 10 and then 9.8 to get about 3.5.
TLDR: 3.5
The formula for potential energy is
E(p) = mgh
(Mass x gravity x height)
Therefore energy = (5.3)(9.8)(6.6)
= 342.8 J
How did I get 9.8?
9.8 is the constant for gravity
If <em>the isotherms</em> are spaced closely together over some portion of the map, there is a drastic temperature change over that portion.