Answer: Symbol A
Explanation:
The four symbols described here represent:
- Symbol A shows two dots and a line draw from one not connected to the other. --> this is an open switch. A switch is component of a circuit that is used to open/close the circuit in order to interrupt/allow the flow of current through the circuit. In this case, the switch is open, since the line does not connect the second dot.
- Symbol B shows two dots and a line draw from one connected to the other. --> this is the symbol used to represent the switch when it is closed, so it is a closed switch.
- Symbol C shows vertical lines in the pattern long, short, long, and short with a plus and minus symbol on it. --> this symbol represents a battery, which consists of two or more cells and provides the electromotive force that pushes the electrons along the circuit.
Therefore, the correct symbol representing the open switch is
Symbol A
Answer:
Same magnitude of the 10 nc charge cause the electric field is external.
Explanation:
To do a better explanation, let's go and suppose we have an electric field of, 1300 N/C with a 10 nC charge.
As the system we are talking about is really big, and the charge is small, we can assume always if the charge is sitting right in the same point where the electric field is, then, the electric field would not suffer any kind of alteration in it's value. Therefore, no matter what value of the charge is sitting here, the electric field is independent of the charge, so it would not feel any alteration. However, the force that the charge is feeling would be stronger than in the first case.
F = qE
If charge is doubled, then the force would be bigger in the second case than in the first case, but electric field remain the same value.
Answer:
Explanation:
Let mass of bullet = m1 = 28g= 0.028 kg
mass of pendulum = m2 = 3.1 kg
Power is energy/time where energy is in joules and time is in seconds. The units for power is watts, W.
P = 500J/30s = 16.67 W
Hope this helps!
Answer:
Experiments showed that increasing the light frequency increased the kinetic energy of the photoelectrons, and increasing the light amplitude increased the current.
Explanation:
The photocurrent increases linearly with the intensity of the incident light but is independent of its frequency. The stopping potential increases linearly with the frequency of the incident light but is independent of its intensity.