Answer:
Ans= 9
See attached picture for clearer solution.
Explanation:
The net electrostatic force acting on charge A = 2/ 2 + 2 /(2) 2 − 2 /(3) 2 = 2 / 2 (1 + 1/4 – 1/9 ) = 41/36 2/2 .
The net electrostatic force acting on charge B = 2/2 + 2/(2)2 − 2/2 = 1/4 2/d2 .
The net electrostatic force acting on charge C = 2/2 + 2/(2)2 + 2/2 = 2/2 (1 + 1 4 + 1) = 9/4 2/2 .
The net electrostatic force acting on charge D = 2/2+ 2 /(2)2 + 2/(3)2 = 2 /2 (1 + 1/4 + 1/9 ) = 49/36 2/ 2 .
The ratio of the largest to the smallest net force = 9/4*2/2 / 1/4 2/2 . = 9
Answer:
500J
Explanation:
The arrow will have an energy of 500J after it has been released from its state of rest.
This is compliance with the law of conservation of energy which states that "in every system, energy is neither created nor destroyed but transformed from one form to another".
- The energy at rest which is the potential energy is 500J
- This energy will be converted to kinetic energy in total after the arrow has been released.
- This way, no energy is lost and we can account for the energy transformations occurring.
Answer:
The combining of light nuclei is called nuclear fusion.
Answer:
a) x_{cm} = m₂/ (m₁ + m₂) d
, b) x_{cm} = 52.97 pm
Explanation:
The expression for the center of mass is
= 1 / M ∑
Where M is the total masses, mI and xi are the mass and position of each element of the system.
Let's fix our reference system on the oxygen atom and the molecule aligned on the x-axis, let's use index 1 for oxygen and index 2 for carbon
x_{cm} = 1 / (m₁ + m₂) (0+ m₂ x₂)
Let's reduce the magnitudes to the SI system
m₁ = 17 u = 17 1,661 10⁻²⁷ kg = 28,237 10⁻²⁷ kg
m₂ = 12 u = 12 1,661 10⁻²⁷ kg = 19,932 10⁻²⁷ kg
d = 128 pm = 128 10⁻¹² m
The equation for the center of mass is
x_{cm} = m₂/ (m₁ + m₂) d
b) let's calculate the value
x_{cm} = 19.932 10⁻²⁷ /(19.932+ 28.237) 10⁻²⁷ 128 10-12
x_{cm} = 52.97 10⁻¹² m
x_{cm} = 52.97 pm
Answer:
In metallic bonds, the valence electrons from the s and p orbitals of the interacting metal atoms delocalize.