Answer:
11.51% probability that the sample average will be less than 182
Step-by-step explanation:
To solve this question, we have to understand the normal probability distribution and the central limit theorem.
Normal probability distribution:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit theorem:
The Central Limit Theorem estabilishes that, for a random variable X, with mean
and standard deviation
, a large sample size can be approximated to a normal distribution with mean
and standard deviation ![s = \frac{\sigma}{\sqrt{n}}](https://tex.z-dn.net/?f=s%20%3D%20%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D)
In this problem, we have that:
![\mu = 187, \sigma = 32, n = 64, s = \frac{32}{\sqrt{64}} = 4](https://tex.z-dn.net/?f=%5Cmu%20%3D%20187%2C%20%5Csigma%20%3D%2032%2C%20n%20%3D%2064%2C%20s%20%3D%20%5Cfrac%7B32%7D%7B%5Csqrt%7B64%7D%7D%20%3D%204)
What is the probability that the sample average will be less than 182
This is the pvalue of Z when X = 182. So
![Z = \frac{X - \mu}{\sigma}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7B%5Csigma%7D)
By the Central Limit Theorem
![Z = \frac{X - \mu}{s}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7BX%20-%20%5Cmu%7D%7Bs%7D)
![Z = \frac{182 - 187}{4}](https://tex.z-dn.net/?f=Z%20%3D%20%5Cfrac%7B182%20-%20187%7D%7B4%7D)
![Z = -1.2](https://tex.z-dn.net/?f=Z%20%3D%20-1.2)
has a pvalue of 0.1151
11.51% probability that the sample average will be less than 182