Answer: Okay so here's the order lol from top to bottom
2, 1, 3, 4, 5
Explanation:
While staying in the same period, if we move from left to right across the period, the atomic radius decreases. The reason is, in a period the number of shells remain the same and the number of electrons and protons increase as we move across the period to the right. The increased electrons and protons attract each other with greater force and hence the atomic size decreases.
So the element on the left most will have the largest atomic radius. So the correct ans is Potassium. Potassium will have the largest atomic size among Potassium, Calcium and Scandium.
All sodium compounds show the same coloured flame because sodium’s familiar bright orange-yellow flame colour results from promoted electrons falling back from the 3p1 level to their normal 3s1 level. The exact sizes of the possible jumps in energy terms vary from one metal to another.
In this redox reaction, the Cu goes from oxidation state of (0) to (+2), therefore it oxidises. N in HNO₃ goes from oxidation state of (+5) to N in NO with oxidation state of (+2) and becomes reduced.
Cu acts as the reducing reagent and HNO₃ is the oxidising agent.
oxidation half reaction
Cu ---> Cu²⁺ + 2e --1)
reduction half reaction
4H⁺ + 3e + NO₃⁻ ---> NO + 2H₂O --2)
to balance the number of electrons , 1) x3 and 2) x2
3Cu ---> 3Cu²⁺ + 6e
8H⁺ + 6e + 2NO₃⁻ ---> 2NO + 4H₂O
add the 2 equations
3Cu + 8H⁺ + 2NO₃⁻ ---> 3Cu²⁺ + 2NO + 4H₂O
add 6 nitrate ions to both sides to add up to 8 and form acid with 8H⁺ ions
3Cu + 8HNO₃ ---> 3Cu(NO₃)₂ + 2NO + 4H₂O
Balanced equation for the redox reaction is as follows;
3Cu(s) + 8HNO₃(aq) → 3Cu(NO₃)₂(aq) + 2NO(g) + 4H₂O<span>(l)
NO has a coefficient of 2
</span>