Answer:
Two methods which help us to conserve water are:
Sprinkler irrigation system: this irrigation has an arrangement of vertical pipes with rotating nozzles on the top. It is more useful in the uneven and sandy land where sufficient water is not available.
Drip irrigation system: this irrigation system has an arrangement of pipes or tubes with very small holes in them to water plants drop by drop just at the base of the root. It is very efficient as water is not wasted at all.
Your answer is B.
<em>Hope this helps... leave a 5-rate and a thanks!</em>
<h3>
Answer:</h3>
147.05 g/mol
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
CuClO₃
<u>Step 2: Find MM</u>
Molar Mass of Cu - 63.55 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CuClO₃ - 63.55 + 35.45 + 3(16.00) = 147.05 g/mol
Copper is a soft, ductile, and malleable metal that bends and stretches easily without breaking. Copper is a versatile metal for construction and manufacturing because of this.
Answer:
0.0025 M/min
Explanation:
The rate of a reaction can be calculated for an element, based on its stoichiometric coefficient. For a reaction:
aA + bB = cC + dD , the rate will be
r = -(1/a)x(Δ[A]/Δt) = -(1/b)x(Δ[B]/Δt) = (1/c)x(Δ[C]/Δt) = (1/d)x(Δ[D]/Δt)
Where Δ[X] is the variation of the concentration of the X compound, Δt is the time variation, and the signal of minus in the reagents compounds is because they are disappearing, so Δ[X] will be negative, and r must be positive. So, for the reaction given:
r = -(1/2)x(Δ[NO]/Δt)
r = -(1/2)x( (0.025 - 0.1)/15)
r = 0.0025 M/min