Answer:
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution
Explanation:
Step 1: Data given
Nitric acid = HNO3
Molar mass of H = 1.01 g/mol
Molar mass of N = 14.0 g/mol
Molar mass O = 16.0 g/mol
Number of moles nitric acid (HNO3) = 0.25 moles
Molairty = 0.10 M
Step 2: Calculate molar mass of nitric acid
Molar mass HNO3 = Molar mass H + molar mass N + molar mass (3*O)
Molar mass HNO3 = 1.01 + 14.0 + 3*16.0
Molar mass HNO3 = 63.01 g/mol
Step 3: Calculate mass of solute use
Mass HNO3 = moles HNO3 * molar mass HNO3
Mass HNO3 = 0.25 moles * 63.01 g/mol
Mass HNO3 = 15.75 grams
15.75 grams of HNO3 was used and dissolved in 2.5 liters of solvent, to make a 0.10 M solution
Oxygen gas was most likely absent from Earth's primitive atmosphere. The current theory is that the Earth's early atmosphere was composed of mainly carbon dioxide and methane due to the high volcanic activity. Cyanobacteria and their use of photosynthesis was what caused earth's atmosphere to become oxygen enriched.
I hope that helps.
Answer:
the atomic number is 5
the atomic mass is 11
Explanation:
The atomic number is the amount of protons inside the nucleus, and this number also equals the amount of electrons. Since it shows you the nucleus and the electrons, all you need to do is count the protons (positive charge inside the nucleus) or count all the electrons (negative charge outside the nucleus, in the rings) and you should have your atomic number.
As for mass, all you need to do is count all the protons and neutrons inside the nucleus and add them up. Protons = 5, Neutrons = 6. (you add them since the equation for atomic mass is Atomic Mass = Protons + neutrons. This works every time)
5+6= 11, so your atomic mass is 11
I hope this helps :)