Explanation:
Magnesium reacts with dilute hydrochloric acid in a conical flask which is connected to an inverted measuring cylinder in a trough of water. The volume of hydrogen gas produced is measured over a few minutes, and the results are used to plot a graph
This is intended as a class practical. It is best if the students work in pairs because setting up and starting the experiment requires more than one pair of hands. One student can add the magnesium ribbon to the acid and stopper the flask, while the other starts the stopclock. During the experiment, one student can take the readings while the other records them. The experiment itself takes only a few minutes. But allow at least 30 minutes to give students time to set up, take readings and draw graph.
please mark as brainliest
Raise the boiling temperature
Answer:
Mass of barium sulfate = 8.17 g
Explanation:
Given data:
Mass of sodium sulfate = 4.98 g
Mass of barium sulfate produced = ?
Solution:
Na₂SO₄ + Ba(NO₃)₂ → BaSO₄ + 2NaNO₃
Moles of sodium sulfate:
Number of moles = mass/molar mass
Number of moles =4.98 g / 142.04 g/mol
Number of moles = 0.035 mol
Now we will compare the moles pf sodium sulfate and with barium sulfate.
Na₂SO₄ : BaSO₄
1 : 1
0.035 : 0.035
Mass of barium sulfate:
Mass = number of moles × molar mass
Mass = 0.035 mol ×233.4 g/mol
Mass = 8.17 g
Butyne is the alkyne with four carbon atoms, and, as the question states, it has one carbon-carbon triple bond. The general formula of an alkyne is CnH2n-2, that means that when there are 2 carbons the formula is C2H2, when there are 3 carbons the formula is C3H4, and when there are 4 carbons the formula is C4H6. So, <span>butyne is C4H6 or " CH3-C (triple bond) C - CH3" (note that I wrote the phrase triple bond between the two Cs in the middle of the formula because there is no way to draw the three hyphens stacked one over other").</span>