Answer:
42 hours is 2520 minutes...
If 1000 mg drops in 2520 minutes,
Then in 1 minute, (1000/2520) drop drops...
Which is approximately 0.40 drops.
Answer:: Mendel studied how traits are been passed from parents to offspring using seven features in peas, including height, flower color, seed color, and seed shape. To do this he divided the pea plant into short height and tall height. From this experiment he proposed a principle called independent assortment, which describes how different genes independently separate from one another when reproductive cells develop. Though this experiment was studied using gene formation in prokaryotic cell.
This principle of independent assortment is also seen in eukaryotic cells during meiosis.
Mendel proposed this principle because during cell formation of the offspring, each individual Gene from the parents will first separate to stand on its own before cross linking up together, which made the offspring look different from the parents. The principle of independent assortment does not criticize gene linkage, it only highlight how gene in the garments of the parents forms offspring, by sperating to assort independently.
2 Na + 2 H2O → 2 NaOH + H2 (balanced equation)
The answer would be 2, since 2 in the coefficient of both Na and NaOH
Answer:
A. fluorine, 1.79 moles
Explanation:
Given parameters:
Mass of carbon = 87.7g
Mass of fluorine gas = 136g
Unknown:
The limiting reactant and the maximum amount of moles of carbon tetrafluoride that can be produced = ?
Solution:
Equation of the reaction:
C + 2F₂ → CF₄
let us find the number of the moles the given species;
Number of moles =
C; molar mass = 12;
Number of moles =
= 7.31moles
F; molar mass = 2(19) = 38g/mol
Number of moles =
= 3.58moles
So;
From the give reaction:
1 mole of C requires 2 moles of F₂
7.31 moles of C will then require 2 x 7.31 moles of F₂ = 14.62moles
But we have 3.58 moles of the F₂;
Therefore, the reactant in short supply is F₂ and it is the limiting reactant;
So;
2 moles of F₂ will produce mole of CF₄
3.58 moles of F₂ will then produce
= 1.79moles of CF₄
Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.