1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
5

There are TWO questions!! Please help me!! Thank you loves!! <3

Mathematics
1 answer:
Naily [24]3 years ago
7 0

Rotation is a rigid transformation. It changes neither lengths nor angle measures.

1. B. 52 degrees

2. B. 18 in.

You might be interested in
. The circumference of Earth’s moon is about 1,091,500,000 cm. Write this number in scientific notation. *
kondaur [170]

1.0915 x 10{9} <----Exponet

7 0
3 years ago
Could someone please help me with this question??
weqwewe [10]

Answer: 26 cups will fit in a dispenser that is 30 cm high.

Step-by-step explanation:

First of all, we know that the first cup in the stack (the bottom cup) will be ten centimeters high, and we know that for every cup that is added on top of that, .8 centimeter will be added to the height. So, if we want to find how many cups will be in the dispenser we do this simple math:

30 - 10 = 20   Because the first cup is ten centimeters, we have to subtract that from the dispenser height.

20/.8=25   To find how many cups will be stacked on top of the first cup, we divide the remaining height by .8, the height of every other cup.

Now that we know that there will be 25 cups stacked on top of the first, we add the bottom cup to the rest of them.

25 + 1 = 26 Cups.

8 0
3 years ago
Activity 4: Performance Task
Nookie1986 [14]

An arithmetic progression is simply a progression with a common difference among consecutive terms.

  • <em>The sum of multiplies of 6 between 8 and 70 is 390</em>
  • <em>The sum of multiplies of 5 between 12 and 92 is 840</em>
  • <em>The sum of multiplies of 3 between 1 and 50 is 408</em>
  • <em>The sum of multiplies of 11 between 10 and 122 is 726</em>
  • <em>The sum of multiplies of 9 between 25 and 100 is 567</em>
  • <em>The sum of the first 20 terms is 630</em>
  • <em>The sum of the first 15 terms is 480</em>
  • <em>The sum of the first 32 terms is 3136</em>
  • <em>The sum of the first 27 terms is -486</em>
  • <em>The sum of the first 51 terms is 2193</em>

<em />

<u>(a) Sum of multiples of 6, between 8 and 70</u>

There are 10 multiples of 6 between 8 and 70, and the first of them is 12.

This means that:

\mathbf{a = 12}

\mathbf{n = 10}

\mathbf{d = 6}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{10} = \frac{10}2(2*12 + (10 - 1)6)}

\mathbf{S_{10} = 390}

<u>(b) Multiples of 5 between 12 and 92</u>

There are 16 multiples of 5 between 12 and 92, and the first of them is 15.

This means that:

\mathbf{a = 15}

\mathbf{n = 16}

\mathbf{d = 5}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*15 + (16 - 1)5)}

\mathbf{S_{16} = 840}

<u>(c) Multiples of 3 between 1 and 50</u>

There are 16 multiples of 3 between 1 and 50, and the first of them is 3.

This means that:

\mathbf{a = 3}

\mathbf{n = 16}

\mathbf{d = 3}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{16}2(2*3 + (16 - 1)3)}

\mathbf{S_{16} = 408}

<u>(d) Multiples of 11 between 10 and 122</u>

There are 11 multiples of 11 between 10 and 122, and the first of them is 11.

This means that:

\mathbf{a = 11}

\mathbf{n = 11}

\mathbf{d = 11}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{16} = \frac{11}2(2*11 + (11 - 1)11)}

\mathbf{S_{11} = 726}

<u />

<u>(e) Multiples of 9 between 25 and 100</u>

There are 9 multiples of 9 between 25 and 100, and the first of them is 27.

This means that:

\mathbf{a = 27}

\mathbf{n = 9}

\mathbf{d = 9}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{9} = \frac{9}2(2*27 + (9 - 1)9)}

\mathbf{S_{9} = 567}

<u>(f) Sum of first 20 terms</u>

The given parameters are:

\mathbf{a = 3}

\mathbf{d = 3}

\mathbf{n = 20}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{20} = \frac{20}2(2*3 + (20 - 1)3)}

\mathbf{S_{20} = 630}

<u>(f) Sum of first 15 terms</u>

The given parameters are:

\mathbf{a = 4}

\mathbf{d = 4}

\mathbf{n = 15}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{15} = \frac{15}2(2*4 + (15 - 1)4)}

\mathbf{S_{15} = 480}

<u>(g) Sum of first 32 terms</u>

The given parameters are:

\mathbf{a = 5}

\mathbf{d = 6}

\mathbf{n = 32}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{32} = \frac{32}2(2*5 + (32 - 1)6)}

\mathbf{S_{32} = 3136}

<u>(g) Sum of first 27 terms</u>

The given parameters are:

\mathbf{a = 8}

\mathbf{d = -2}

\mathbf{n = 27}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{27} = \frac{27}2(2*8 + (27 - 1)*-2)}

\mathbf{S_{27} = -486}

<u>(h) Sum of first 51 terms</u>

The given parameters are:

\mathbf{a = -7}

\mathbf{d = 2}

\mathbf{n = 51}

The sum of n terms of an AP is:

\mathbf{S_n = \frac n2(2a + (n - 1)d)}

Substitute known values

\mathbf{S_{51} = \frac{51}2(2*-7 + (51 - 1)*2)}

\mathbf{S_{51} = 2193}

Read more about arithmetic progressions at:

brainly.com/question/13989292

4 0
2 years ago
Read 2 more answers
I know how to do this but I just want to spend some points :)
Lunna [17]

Answer:

domain: all real numbers

range: y<-2

Step-by-step explanation:

I think its correct but already know the answer sooo yea

7 0
3 years ago
Kaylee's history class quiz scores for the current grading period are 10, 50, 75, 80, 82,
goldfiish [28.3K]
B is the answer I need the points
5 0
3 years ago
Other questions:
  • Two ocean beaches are being affected by erosion. The table shows the width, in feet, of each beach measured at high tide where 1
    11·1 answer
  • Linda, Frank, and Reuben have a total of $97 in their wallets. Reuben has 4 times what Linda has. Frank has $7 more than Linda.
    13·2 answers
  • an aquarium at sea world is 10ft long, 3ft wide, and is filled with water to a depth of 7ft. water weighs 62.4 pounds per cubic
    6·2 answers
  • A food packet is dropped from a helicopter and is modeled by the function f(x) = −15x2 + 6000. The graph below shows the height
    6·2 answers
  • Food prices including tax
    9·1 answer
  • Miss Penny inherits £910.
    11·2 answers
  • Find the specific solution of the differential equation dy/dx equals the quotient of 2 times y and x squared with condition y(-2
    9·1 answer
  • what is the area of the figure ? answers a. 12 units2 b. 17 units 2 c. 16 units 2 d. 24 units2 e. none
    6·1 answer
  • What is the sum for 2x+10?
    7·1 answer
  • Uh need help
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!