1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
user100 [1]
3 years ago
8

An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r

adius a = 2.7 cm and outer radius b = 4.7 cm. The insulating shell is uniformly charged with a volume density of ρ = -567 μC/m3.
Physics
1 answer:
bixtya [17]3 years ago
4 0

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

You might be interested in
Name some of the mediums that sound can travel through
Brums [2.3K]

Answer:

gas, liquid, and solid

Explanation:

6 0
2 years ago
Read 2 more answers
What minimum speed does a 200 g puck need to make it to the top of a frictionless ramp that is 4.1 m long and inclined at 22 ∘?
myrzilka [38]

Answer:

5.5 m/ sec

Explanation:

Because the inclined surface is frictionless so we can assume that total change of energy is zero

i-e ΔE = 0

Or we can say that difference between final and initial energy is zero i-e

Ef- Ei =0

Where,

Ef= final energy at the top of the ramp= KEf+PEf

Ei= Initial energy at the bottom of the ramp=KEi+PEi

So we have

(KEf+PEf)-(KEi+PEi)=0

==>KEf-KEi+PEf-PEi=0            -------------(1)

KEf = mgh = 200×9.8×h

Where h= Sin 22 = h/d= h/4.1

or

0.375×4.1=h

or h= 1.54 m

So, PEf= 200×9.8×1.54=3018.4 j

and KEf= 1/2 mVf^{2}= 0.5×200×0=0 j

PEi= mgh = 200×9.8×0=0 j

KEi= 1/2 mVi^{2}=0.5×200×Vi^{2}=100Vi^{2} j

Put these values in eq 1, we get;

0-100 Vi^{2}+3018.4-0=0

-100 Vi^{2}=-3018.4

==> Vi^{2}= \frac{3018.4}{100} = 30.184

==>  Vi = \sqrt{30.184}  = 5.5 m.sec

7 0
3 years ago
What is the goal of the scientific method
IgorLugansk [536]

Answer:

Regardless of how the steps are documented, the goal of scientific method is to gather data that will validate or invalidate a cause and effect relationship.

Hope this helped!!!

7 0
2 years ago
Heeeeellllpppppp meeee please​
solniwko [45]

Answer:

i cant solve this!

Mybe i can solve another question!

3 0
2 years ago
IF you are in Space and push a bowling what happens to you and the bowling ball?
Anastaziya [24]

Answer:

The bowling ball did not change size or shape- the only thing that changed was the amount of gravity that pulls on it. But the mass of the bowling ball would never change. A bowling ball with a mass of 12 pounds on earth will have the mass of 12 pounds on the moon! Mass is the amount of atoms that a space fills.

Explanation:

I hope this helps! :D

4 0
3 years ago
Other questions:
  • What is the speed of a car that travels 60 meters in 5 seconds
    11·1 answer
  • In an extrasolar planetary system containing a single planet, the parent star is measured to move about its center of mass every
    10·1 answer
  • A 2.00-kilogram mud ball drops from rest at a height of 17.0 m. If the impact between the ball and the ground lasts 0.46 s, what
    5·1 answer
  • Which process binds together sediment to form new rock?
    10·1 answer
  • The soles of a popular make of running shoe have a force constant of 2.0×105 N/m . Treat the soles as ideal springs for the foll
    11·1 answer
  • What is the explanation for the fact that the desert sand is very hot in the day and very cool at night? 1. Sand reflects light
    10·1 answer
  • Is Radioactive decay a way to find the relative age of a rock?<br><br> True<br> False
    14·1 answer
  • The waves in the pool where you are floating have a crest height of about 1 foot. Bobby does a cannonball dive off the side of t
    8·1 answer
  • HELLPPP WILL GIVE B IF CORRECT NEED IT FAST!!!! Please help me
    6·1 answer
  • What is the frequency of a photon with an energy of 4. 56 x 10^-19 j
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!