Answer:
Gene Sarazen began to win tournaments in 1935 with a new club he had invented that was specialized for sand play. He is hailed as the inventor of the sand wedge.
Explanation:
A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.
The force is applied on a flat, broad surface. This energy is transported to the pointy, sharp end of the wedge, hence the force is transported.
The wedge simply transports energy and collects it to the pointy end, consequently breaking the item. In this way, much pressure is put on a thin area.
Answer:
The magnetic field in the System is 0.095T
Explanation:
To solve the exercise it is necessary to use the concepts related to Faraday's Law, magnetic flux and ohm's law.
By Faraday's law we know that

Where,
electromotive force
N = Number of loops
B = Magnetic field
A = Area
t= Time
For Ohm's law we now that,
V = IR
Where,
I = Current
R = Resistance
V = Voltage (Same that the electromotive force at this case)
In this system we have that the resistance in series of coil and charge measuring device is given by,

And that the current can be expressed as function of charge and time, then

Equation Faraday's law and Ohm's law we have,



Re-arrange for Magnetic Field B, we have

Our values are given as,





Replacing,


Therefore the magnetic field in the System is 0.095T
Explanation:
The magnitude of a vector v can be found using Pythagorean's theorem.
||v|| = √(vₓ² + vᵧ²)
||v|| = √((-309)² + (187)²)
||v|| ≈ 361
You can find the angle of a vector using trigonometry.
tan θ = vᵧ / vₓ
tan θ = 187 / -309
θ ≈ 149° or θ ≈ 329°
vₓ is negative and vᵧ is positive, so θ must be in the second quadrant. Therefore, θ ≈ 149°.
Answer:
A - elastic since many other fast food items could be considered close substitutes.
Explanation:
The price elasticity of demand is how much the demand of the Big Macs will change due to a 1% change in price. Should the elasticity be greater than 1, the Big Macs will be elastic. Should it be less than 1, the Big Macs are inelastic.
Demand elasticity is calculated as the percentage change in quantity demanded divided by a percentage change in price.
Since Big Macs are (i) a luxury good, and (ii) have close substitutes (other burgers available at McDonalds and other fast food stores), we will say their elasticity is greater than 1.
This means that the demand of Big Macs will change due to a 1% increase in price due to the presence of close substitutes.
Photosynthesis. Photosynthesis is the process the plant uses to absorbs light to make food