Answer:
the average force exerted on the ball by the bat is 11,613.27 N
Explanation:
Given;
mass of the baseball, m = 151 g = 0.151 kg
initial velocity of the baseball, u = 39.5 m/s
final velocity of the baseball, v = 45.1 m/s
time of action, t = 1.10 ms = 1.10 x 10⁻³ s
The average force exerted on the ball by the bat is calculate as;
Therefore, the average force exerted on the ball by the bat is 11,613.27 N
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Sound waves travel around the boxed room causing them to bounce of the nearest walls to the end of the room>
(a). If the temperature of a substance is increased the density of it will also increased. The temperature is directly proportional to the density because the molecular activity of the substance will be affected by the temperature
(b).The mass of the substance doesn't at all. Because the amount of matter inside the substance cannot be affected by the temperature except that its water
Answer:
The volume of the submerged part of her body is 
Explanation:
Let's define the buoyant force acting on a submerged object.
In a submerged object acts a buoyant force which can be calculated as :
ρ.V.g
Where ''B'' is the buoyant force
Where ''ρ'' is the density of the fluid
Where ''V'' is the submerged volume of the object
Where ''g'' is the acceleration due to gravity
Because the girl is floating we can state that the weight of the girl is equal to the buoyant force.
We can write :
(I)
Where ''W'' is weight
⇒ If we consider ρ =
(water density) and
and replacing this values in the equation (I) ⇒


ρ.V.g = 610N
(II)
The force unit ''N'' (Newton) is defined as

Using this in the equation (II) :



We find that the volume of the submerged part of her body is 