The gravitational force experienced by Earth due to the Moon is <u>equal to </u>the gravitational force experienced by the Moon due to Earth.
<u>Explanation</u>:
The force that attracts any two objects/bodies with mass towards each other is defined as gravitational force. Generally the gravitational force is attractive, as it always pulls the masses together and never pushes them apart.
The gravitational force can be calculated effectively using the following formula: F=GMmr^2
where “G” is the gravitational constant.
Though gravity has the ability to pull the masses together, it is the weakest force in the nature.
The mass of the Earth and moon varies, but still the gravitational force felt by the Earth and Moon are alike.
Answer:
Explanation:
solution is in the attachment below
Answer:
Explanation:
Suppose v is the initial velocity and
is the angle of inclination
distance traveled in vertical direction in t=1 s
When gravity is present

where 



here initial velocity is v\sin \theta [/tex] so


In absence of gravity



Force acting during collision is internal so momentum is conserve
so (initial momentum = final momentum) in both directions
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1150 kg and was approaching at 5.00 m/s due south. The second car has a mass of 750 kg and was approaching at 25.0 m/s due west.
Let Vx is and Vy are final velocities of car in +x and +y direction respectively.
initial momentum in +ve x (east) direction = final momentum in +ve x direction (east)
- 750*25 + 1150*0 = (750+1150)
Vx
initial momentum in +ve y (north) direction = final momentum in +ve y direction (north)
750*0 - 1150*5 = (750+1150)
Vy
from here you can calculate Vx and Vy
so final velocity V is
<span>V=<span>(√</span><span>V2x</span>+<span>V2y</span>)
</span>
and angle make from +ve x axis is
<span>θ=<span>tan<span>−1</span></span>(<span><span>Vy</span><span>Vx</span></span>)
</span><span>
kinetic energy loss in the collision = final KE - initial KE</span>
Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x