1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
777dan777 [17]
3 years ago
8

Wire A has the same length and twice the radius of wire B. Both wires are made of the same material and carry the same current.

Which of the following equations is true concerning the drift velocities vA and vB of electrons in the wires?a. vA = vB/4b. vA = vB/2c. vA = 4vBd. vA = vBe. vA = 2vB
Physics
1 answer:
WARRIOR [948]3 years ago
6 0

Answer:

V_A= \frac{I_A}{n_A e A_A}= \frac{I}{ne 4A_B}= \frac{1}{4} \frac{I}{neA_B}

V_B= \frac{I_B}{n_B e A_B}= \frac{I}{ne A_B}

And as we can see we have that:

V_A = \frac{1}{4} V_B

So then the best answer would be:

a. vA = vB/4

Explanation:

For this case we know the following conditions:

L_A = L_B =L same length

I_A = I_B =I both wires with the same current

Both wires are made of he same material, so then the number of electrons per cubic meter (n) are the same for both wires n_A = n_B =n

We also know that r_A = 2 r_B where r represent the radius.

Since we know that a wire have a cylindrical form we can find the area for each case:

A_A= \pi r^2_A = \pi (2r_B)^2 = 4 \pi r^2_B= 4 A_B

A_B = \pi r^2_B

So then we have that A_A = 4 A_B

Now we know that from the definition the drift velocity of electron in a wire is given by:

v_d = \frac{I}{neA}

Where I is the current, n the number of electrons per cubic meter, e is the charge for the electron and A the area.

If we replace we have this:

V_A= \frac{I_A}{n_A e A_A}= \frac{I}{ne 4A_B}= \frac{1}{4} \frac{I}{neA_B}

V_B= \frac{I_B}{n_B e A_B}= \frac{I}{ne A_B}

And as we can see we have that:

V_A = \frac{1}{4} V_B

So then the best answer would be:

a. vA = vB/4

You might be interested in
Two stationary positive point charges, charge 1 of magnitude 3.90 nC and charge 2 of magnitude 1.80 nC, are separated by a dista
soldi70 [24.7K]

Answer:

v = 7793150 m/s

Explanation:

First, we are going to calculate the electrical potential in the point middle between the two charges

Remember that the electrical potential can be calculated as:

v = \frac{kQ}{r}

                 Where     k = 8.9874 x 10^{9} \frac{Nm^{2} }{C^{2} }

and it is satisfy the superposition principle, thus

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.23} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.23}

v = 222.73v

The electrical potential at 10 cm from charge 1 is:

v = \frac{8.9874x10^{9}(3.90x10^{-9} ) }{0.1} +  \frac{8.9874x10^{9}(1.80x10^{-9} ) }{0.36}

v = 395.44 v

Since the work - energy theorem, we have:

q\Delta v = \frac{mv^{2} }{2}

                     where q is the electron's charge and m is the electron's mass

Therefore:

v = \sqrt{\frac{2q\Delta v}{m} }

v = 7793150 m/s

6 0
3 years ago
What type of galaxy is this?
stiks02 [169]

Answer:

Barred Spiral.

8 0
2 years ago
The magnetic field at the center of a 1.0-cm-diameter loop is 2.5 mT.
olga nikolaevna [1]

Answer:

(a) The current in the wire is 19.89 A

(b) The distance from the wire is 0.159 cm

Explanation:

Given;

magnetic field, B = 2.5 mT

diameter of the wire, d = 1 cm

radius of the wire, r = 0.5 cm = 0.005 m

(a) The current in the wire is calculated as;

I = \frac{2Br}{\mu_0} \\\\I = \frac{2\times 2.5 \times 10^{-3} \times 0.005 }{4\pi \times 10^{-7} } \\\\I = 19.89 \ A

(b) The distance from the wire where the magnetic field is 2.5 mT is calculated as;

B = \frac{\mu_0 I}{2\pi d} \\\\where;\\\\d \ is \ the \ distance \ from \ the \  wire\\\\d = \frac{\mu_0 I}{2\pi B} = \frac{4 \pi \times 10^{-7} \times 19.89}{2\pi \times 2.5 \times 10^{-3}}  = 0.00159 \ m = 0.159 \ cm

6 0
3 years ago
What is the formula to calculate the mechanical advantage of a lever
Sophie [7]
The formula for<span> </span>mechanical advantage<span> (MA) for levers: You can use the ratio of the input arm length to the output arm length (input/output): Most of the time, levers are used to multiply force to lift heavy objects.</span>
8 0
3 years ago
Which subatomic particle has a negative charge? Please help i think its A but im not sure A. proton B. electron C. neutron D.all
nikklg [1K]
The answer is electron cause it head a negative power.
5 0
3 years ago
Read 2 more answers
Other questions:
  • An external resistor with resistance R is connected to a battery that has emf ε and internal resistance r. Let P be the electric
    5·1 answer
  • What is a continuous range of a single feature such as a wave lengt
    8·1 answer
  • Ahmed kept a balloon from his birthday for several days until it began to deflate and slowly sink to the ground. He wondered how
    9·2 answers
  • What is the maximum weight a boat can hold if a boat can displace 60.5ml?
    6·1 answer
  • What is the greatest velocity which a falling object can achieve while falling through the air?
    15·1 answer
  • 35 POINTSS!!! PLSSSS HELLPPP!!!
    13·1 answer
  • -15° C ice is warmed, melted, water is warmed then vaporized then the vapor is
    6·1 answer
  • THE MASS AND WEIGHT OF A BOX IS 25 Kg &amp; 245 N RESPECTIVELY WHEN ON EARTH. what is the value of mass and weight of the box wh
    6·1 answer
  • Which of the following statements best summarizes the main points of the passage?
    5·1 answer
  • when two resistors are wired in series with a 12 v battery, the current through the battery is 0.31 a. when they are wired in pa
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!