Answer:
we learned that an object that is vibrating is acted upon by a restoring force. The restoring force causes the vibrating object to slow down as it moves away from the equilibrium position and to speed up as it approaches the equilibrium position. It is this restoring force that is responsible for the vibration. So what forces act upon a pendulum bob? And what is the restoring force for a pendulum? There are two dominant forces acting upon a pendulum bob at all times during the course of its motion. There is the force of gravity that acts downward upon the bob. It results from the Earth's mass attracting the mass of the bob. And there is a tension force acting upward and towards the pivot point of the pendulum. The tension force results from the string pulling upon the bob of the pendulum. In our discussion, we will ignore the influence of air resistance - a third force that always opposes the motion of the bob as it swings to and fro. The air resistance force is relatively weak compared to the two dominant forces.
The gravity force is highly predictable; it is always in the same direction (down) and always of the same magnitude - mass*9.8 N/kg. The tension force is considerably less predictable. Both its direction and its magnitude change as the bob swings to and fro. The direction of the tension force is always towards the pivot point. So as the bob swings to the left of its equilibrium position, the tension force is at an angle - directed upwards and to the right. And as the bob swings to the right of its equilibrium position, the tension is directed upwards and to the left. The diagram below depicts the direction of these two forces at five different positions over the course of the pendulum's path.
that's what I know so far
Answer:
it’s an example of a generator.
Explanation:
Answer: B. store electric charges.
Explanation: I JUST TOOK THE PF EXAM AND I GOT IT CORRECT!!!!
Several short trips taken from a cold start can use ...twice... as much fuel as a longer multi-purpose trip covering the same distance when the engine is warm.
In cold weather, properly designed gasoline aids in engine starting, while in hot weather, it helps prevent vapor lock. In order to meet the requirements of a modern engine, the fuel must have the volatility for which the engine's fuel system was built and an antiknock quality strong enough to prevent knock during routine operation.
During the intake phase, the air and fuel are combined before being introduced into the cylinder. The spark ignites the fuel-air mixture after the piston compresses it, resulting in combustion. During the power stroke, the piston is propelled by the expansion of the combustion gases.
To learn more about engine and fuel please visit -
brainly.com/question/5181209
#SPJ4
Answer:
2. a region about the nucleus in which an electron of specified energy will probably be found
Explanation:
With quantum mechanics we can find the wave function that describes the movement of the particles, the interpretation of this wave function is through the probability density (φ* φ).
This probabilistic interpretation of the energies, position and amounts of motion electrons allow us to find the region around the nucleus where an electron of specific energy can be found with a given probability.
The correct answer is 2