There are 3 equations involved in manufacturing Nitric Acid from Ammonia.
First the ammonia is oxidized:
4NH3 + 5O2 = 4NO + 6H2O
Then for the absorption of the nitrogen oxides.
2NO + O2 = N2O4
Lastly, the N2O4 is further oxidized into Nitric acid.
3N2O4 + 2H2O = 4HNO3 + 2NO
Then run stoichiometry through these equations.
The first equation produces roughly 271,722,938 grams of NO
The second equation produces roughly 416,606,944 grams of N2O4
The last equation produces roughly 380,412,294 grams of HNO3 (nitric acid)
Convert the exact number back into tons, and your answer is: 419.332775 tons.
Rounded, I'm going to say that's 419.33 tons.
Hope this helps! :)
Also, it seems that commercially, Nitric Acid is commonly made by bubbling NO2 into water, rather than using ammonia.
Answer:
5.625 moles of oxygen, O₂.
Explanation:
The balanced equation for the reaction is given below:
4Al + 3O₂ —> 2Al₂O₃
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Finally, we shall determine the number of mole of O₂ required to react with 7.5 moles of aluminum, Al. This can be obtained as illustrated below:
From the balanced equation above,
4 moles of Al reacted with 3 moles of O₂.
Therefore, 7.5 moles of Al will react with = (7.5 × 3)/4 = 5.625 moles of O₂.
Thus, 5.625 moles of O₂ is needed for the reaction.
<u>Answer:</u> 6.57 L of solution can be made.
<u>Explanation:</u>
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.....(1)
Given values:
Molarity of LiBr = 3.5 M
Moles of LiBr = 23 moles
Putting values in equation 1, we get:

Hence, 6.57 L of solution can be made.
B) Equal to the number of protons