Answer:
0.84 mol
Explanation:
Given data:
Moles of ZnCl₂ produced = ?
Mass of Zn = 55.0 g
Solution:
Chemical equation:
2HCl + Zn → ZnCl₂ + H₂
Number of moles of Zn:
Number of moles = mass / molar mass
Number of moles = 55.0 g/ 65.38 g/mol
Number of moles = 0.84 mol
Now we will compare the moles of Zn with ZnCl₂ from balance chemical equation.
Zn : ZnCl₂
1 : 1
0.84 : 0.84
So from 55 g of Zn 0.84 moles of zinc chloride will be produced.
Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Answer:
95,000 centigrams
Explanation:
There is 1000 CG in 0.01 kilograms
so you do 1000*95 which equals 95,000 centigrams.