Kinetic energy of an object is directly connected to the speed object. Like a toy car being used on a table, the toy car will speed up which means the kinetic energy of that toy car will also increase
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
<span>The correct answer is d. The reaction releases more energy than it absorbs. An example of an exothermic reaction is fire. Connecting the carbon atoms in wood with the oxygen in the air causes flames and gives of heat and light.</span>
<h3>
Answer:</h3>
733 g CO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C₃H₇OH + 9O₂ → 6CO₂ + 8H₂O
[Given] 5.55 mol C₃H₇OH
<u>Step 2: Identify Conversions</u>
[RxN] 2 mol C₃H₇OH → 6 CO₂
Molar Mass of C - 12.01 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of CO₂ - 12.01 + 2(16.00) = 44.01 g/mol
<u>Step 3: Stoichiometry</u>
- Set up conversion:

- Multiply/Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
732.767 g CO₂ ≈ 733 g CO₂