The formula for mole fraction is:
-(1)
The solubility of oxygen gas = 1.0 mmol/L (given)
1.0 mmol/L means 1.0 mmol are present in 1 L.
Converting mmol to mol:

So, moles of oxygen = 0.001 mol
For moles of water:
1 L of water = 1000 mL of water
Since, the density of water is 1.0 g/mL.


So, the mass of water is 1000 g.
Molar mass of water = 18 g/mol.
Number of moles of water = 
Substituting the values in formula (1):


Hence, the mole fraction is
.
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer is: a) is has increased.
There are two types of reaction:
1) endothermic reaction (chemical reaction that absorbs more energy than it releases).
For example, the breakdown of ozone is an endothermic process. Ozone has lower energy than molecular oxygen (O₂) and oxygen atom, so ozone need energy to break bond between oxygen atoms.
2) exothermic reaction (chemical reaction that releases more energy than it absorbs).
For example, ΔH(reaction) = -225 kJ/mol; this is exothermic reaction.
The beaker of acetic acid will cool more quickly.
The specific heat capacity of acetic acid is about half that of water.
Thus, it takes twice as much heat gain (or loss) in acetic acid to cause a given change in temperature.
If everything else is constant and heat is being lost at the same rate, the temperature of the acetic acid should drop twice as fast as that of water.
Cant see it well please find better view