Answer: 2.02 J/g°C
Explanation:
To find the heat capacity, we have to manipulate the equation for heat.
q=mCΔT becomes C=q/(mΔT) to find heat capacity. Since we are given our values, we can plug in to find C.

*Please ignore the capital A in front of the °C. In order to have ° in the equaiton, the A pops up.

TLDR: The energy was being used simply to heat the substance up.
Whenever something melts, it performs what is called a "phase transition", where the state of matter moves from one thing to something else. You can see this in your iced drink at lunch; as the ice in the cup of liquid heats up, it reaches a point where it will eventually "change phase", or melt. The same can be achieved if you heat up that water enough, like if you're cooking; when you boil eggs, the water has so much thermal energy it can "change phase" and become a gas!
However, water doesn't randomly become a boiling gas, it has to heat up for a while before it reaches that temperature. For a real-life example, the next time you cook something, hold you hand above the water before it starts boiling. You'll see that that water has quite a high temperature despite not boiling.
There's a lot of more complex chemistry to describe this phenomena, such as the relationship between the temperature, pressure, and what is called the "vapor pressure" of a liquid when describing phase changes, but for now just focus on the heating effect. When ice melts, it doesn't seem like its heating up, but it is. The ice absorbs energy from its surroundings (the warmer water), thus heating up the ice and cooling down the water. Similarly, the bunsen burner serves to heat up things in the lab, so before the solid melts in this case it was simply heating up the solid to the point that it <u>could</u> melt.
Hope this helps!
The volume that will be occupied at 735 torr and 57 c is 23.12 L
<u><em>calculation</em></u>
- <u><em> </em></u> At STP temperature=273 k and pressure=760 torr
- <u><em> </em></u>by use of combined gas formula
that is P1V1/T1= P2V2/T2
where; P1 =760 torr
T1= 273 K
V1= 18.5 L
P2= 735 torr
T2= 57+273= 330 K
V2=?
- by making V2 the formula of subject
V2= T2P1V1/P2T1
V2= [(18.5L x 330 k x 760 torr)/(735 torr x 273 k)]= 23.12 L
Answer:
nickel
It also tells you the number of electrons that the element has in its outside shells. If the atomic number of nickel is 28 then every atom of nickel has 28 protons in its nucleus and 28 electrons outside the nucleus.
Explanation:
The answer is B. is the energy source of stars.
Fission is the type of nuclear energy simulated on Earth, as it is the one used to generate electricity. Fusion, on the other hand, is much more complicated to achieve because it requires extremely hot temperatures compared to fission. Fusion involves the combination of two hydrogen atoms to make helium, which releases a lot of energy. Stars such as the sun, exhibit fusion with its very hot temperature and abundant source of hydrogen.