Answer:
So yes! A mixture can contain just elements if those elements are not chemically reactive to one another. Air is a great example of an elemental mixture as it contains nitrogen, oxygen, and argon (along with some other compounds).
Explanation:
hope this helps you :)
<u>Answer:</u> The final volume of lungs is 621.5 mL
<u>Explanation:</u>
To calculate the new volume, we use the equation given by Boyle's law. This law states that pressure is inversely proportional to the volume of the gas at constant temperature.
The equation given by this law is:

where,
are initial pressure and volume.
are final pressure and volume.
We are given:

Putting values in above equation, we get:

Hence, the final volume of lungs is 621.5 mL
Answer:
Option C = electron
Explanation:
Electrons are responsible for the production of colored light.
Electron:
The electron is subatomic particle that revolve around outside the nucleus and has negligible mass. It has a negative charge.
Symbol= e-
Mass= 9.10938356×10⁻³¹ Kg
It was discovered by j. j. Thomson in 1897 during the study of cathode ray properties.
How electrons produce the colored light:
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.
Other process may involve,
Fluorescence:
In fluorescence the energy is absorbed by the electron having shorter wavelength and high energy usually of U.V region. The process of absorbing the light occur in a very short period of time i.e. 10 ∧-15 sec. During the fluorescence the spin of electron not changed.
The electron is then de-excited by emitting the light in visible and IR region. This process of de-excitation occur in a time period of 10∧-9 sec.
Phosphorescence:
In phosphorescence the electron also goes to the excitation to the higher level by absorbing the U.V radiations. In case of Phosphorescence the transition back to the lower energy level occur very slowly and the spin pf electron also change.
As long as there is some oxygen, the reaction will occur. If there is an insufficient amount of oxygen, then the oxygen will be the limiting reacting and there will be excess of the other reactants.