Answer:

Explanation:
Hello there!
In this case, since these problems about formulas, firstly require the determination of the empirical formula, assuming that the given percentages are masses, we can calculate the moles and mole ratio of oxygen to iron as shown below:

In such a way, by rounding to the first whole number we multiply by 8 and divide by 5 to obtain:

Whose molar mass is 159.69 g/mol and the mole ratio of the molecular to the empirical formula is:
479.1/159.69=3
Therefore, the molecular formulais:

Regards!
It is spontaneous at 298 k.
Water’s chemical formula is H2O
One atom of oxygen bonded to two attached atoms of hydrogen.
The hydrogen atoms are to one side of the oxygen atom, resulting in a water molecule having a positive charge on the side where the hydrogens reside and a negative charge on the other side, where the oxygen atom resides. This separation
of charge on opposite ends of the molecule is called polarity
I hope this right and can help you!
Answer:
1) positive
2) carbocation
3) most stable
4) faster
Explanation:
A common test for the presence of alcohols can be achieved using the Lucas reagent. Lucas reagent is a mixture of concentrated hydrochloric acid and zinc chloride.
The reaction of Lucas reagent reacts with alcohols leading to the formation of an alkyl chloride. Since the reaction proceeds via a carbocation mechanism, tertiary alcohols give an immediate reaction. Once a tertiary alcohol is mixed with Lucas reagent, the solution turns cloudy almost immediately indicating an instant positive reaction.
Secondary alcohols may turn cloudy within five minutes of mixing the solutions. Primary alcohols do not significantly react with Lucas reagent obviously because they do not form stable carbocations.
Therefore we can use the Lucas reagent to distinguish between primary, secondary and tertiary alcohols.
A conjugate acid is a conjugate base with hydrogen ions attached to it. In this case, the conjugate base is the carbonate ion, CO₃⁻². This ion can have two hydrogen ions, so the conjugate acid is:
H₂CO₃
This compound is known as carbonic acid.