Answer:
![K=K_1*K_2\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Explanation:
Hello there!
In this case, for the given chemical reaction, it turns out firstly necessary to write the equilibrium expression for both reactions 1 and 2:
![K_1=\frac{[CO][H_2]^3}{[CH_4][H_2O]} \\\\K_2=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_1%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%5C%5C%5C%5CK_2%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)
Now, when we combine them to get the overall expression, we infer these two are multiplied to get:
![K=K_1*K_2\\\\K=\frac{[CO][H_2]^3}{[CH_4][H_2O]} *\frac{[CO_2][H_2]}{[CO][H_2O]}\\\\K=\frac{[H_2]^3[CO_2][H_2]}{[CH_4][H_2O][H_2O]}](https://tex.z-dn.net/?f=K%3DK_1%2AK_2%5C%5C%5C%5CK%3D%5Cfrac%7B%5BCO%5D%5BH_2%5D%5E3%7D%7B%5BCH_4%5D%5BH_2O%5D%7D%20%2A%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D%5C%5C%5C%5CK%3D%5Cfrac%7B%5BH_2%5D%5E3%5BCO_2%5D%5BH_2%5D%7D%7B%5BCH_4%5D%5BH_2O%5D%5BH_2O%5D%7D)
Regards!
Diffusion occurs faster in a gas than in liquids because in a liquid the molecules are closser together and in a gas they are farther appart
They all tend to have a sour/bitter taste
It comes to from the chemical reaction itself. Exothermic reaction release heat because the energy level of the products is lower than that of the reactants. Therefore, the net enthalpy change of the reaction is negative (-), meaning heat or light (or any other form of energy) is released into the environment. An example of an exothermic reaction is the combustion of fuel.