Answer: -
6
Explanation: -
The given unbalanced chemical equation is As + NaOH -- > Na3AsO3 + H2
We see there 3 sodium on the right side from Na3AsO3.
But there are only 1 sodium on the left from NaOH.
So we multiply NaOH by 3.
As + 3 NaOH -- > Na3AsO3 + H2
Now we see the number of Hydrogen on the left is 3.
But the number of hydrogens is 2 on the left.
So, we multiply to get both sides 6 hydrogen.
As + 6NaOH -- > Na3AsO3 + 3 H2
Rebalancing for Na,
As + 6NaOH -- > 2Na3AsO3 + 3 H2.
Finally balancing As,
2 As + 6 NaOH -- > 2Na3AsO3 + 3H2
The coefficient of the NaOH molecule in the balanced reaction is thus 6
Answer:
good question..... lemme think now LOL
Answer:
Uranium-238 undergoes alpha decay to form Thorium-234 as daughter product.
Explanation:
Alpha decay is indicative of loss of the equivalents of a helium particle emission. The reaction equation for this reaction is shown below:
→ 
I hope this explanation is clear and explanatory.
Answer:
The chemical reaction in which solid calcium oxide is treated liquid water is an example of Synthesis reaction. Hence, the answer is (D) Synthesis.
Explanation:
The formula of Calcium Oxide is CaO.
The formula of liquid water is H₂O.
Calcium Oxide reacts with water and forms Calcium Hydroxide. The Chemical equation is shown below.
CaO + H₂O --> Ca(OH)₂.
This is a Synthesis reaction because Ca(OH)₂ is synthesized by using Calcium Oxide and water.
The product of this reaction is calcium hydroxide, also known as slaked lime.
Thus, when calcium oxide reacts with water, slaked lime is produced.
Calcium oxide is also known as lime and is most commonly used for many purposes. It can be used for pH correction of water or for its disinfection (with excess lime).
Answer : q = 6020 J, w = -6020 J, Δe = 0
Solution : Given,
Molar heat of fusion of ice = 6020 J/mole
Number of moles = 1 mole
Pressure = 1 atm
Molar heat of fusion : It is defined as the amount of energy required to melt 1 mole of a substance at its melting point. There is no temperature change.
The relation between heat and molar heat of fusion is,
(in terms of mass)
or,
(in terms of moles)
Now we have to calculate the value of q.

When temperature is constant then the system behaves isothermally and Δe is a temperature dependent variable.
So, the value of 
Now we have to calculate the value of w.
Formula used : 
where, q is heat required, w is work done and
is internal energy.
Now put all the given values in above formula, we get

w = -6020 J
Therefore, q = 6020 J, w = -6020 J, Δe = 0