Answer:
a. 0.80V b. 2Ag⁺(aq) + H2(g) ⇄ 2Ag(s) +2H⁺(aq) c. i) 0.88 ii) 1.03 d. Cell is a ph meter with the potential being a function of hydrogen ion concentration
Explanation:
a. The two half cell reactions are
1. 2H⁺(aq) +2e⁻ → H₂(g) Eanode = 0.00V
2. Ag⁺(aq) + e⁻ → Ag(s) Ecathode = 0.80V
The balanced cell reaction is
2Ag(aq)⁺ + H₂(g) ⇄ 2Ag(s) + 2H⁺(aq)
therefore Ecell = Ecathode - Eanode = 0.80 - 0.00 = +0.80V
b. Since the Ecell is positive, the spontaneous cell reaction under standar state conditions is
2Ag(aq)⁺ + H₂(g) ⇄ 2Ag(s) + 2H⁺(aq)
c. Use Nernst Equation
E = Ecell - (0.0592/n)log([H⁺]/[Ag⁺]²[P H₂]), where n is the number of moles of Ag and P H₂= 1.0 atm
i) E = 0.80 - (0.0592/2)log(4.2x10^-2)/(1.0)²(1.0) = 0.88V
ii) E = 0.80 - (0.0592/2)log(9.6x10^-5)/(1.0)²(1.0) = 1.03V
d . From the above calculation we can conclude that the cell acts as a pH meter as a change in hydrogen ion concentration results in a change in the potential of the cell. A change of ph of 2.64 changes the E of cell by 0.15 V.
The results of Rutherford's experiment were surprising as most of the alpha particles went straight without any deflection
<h3>Rutherford's Gold Foil experiment:</h3>
During the experiment, Rutherford directed beams of alpha particles at the thin gold foil and observed the following things:
- Most of the alpha particles passed straight without any deflection
- Few alpha particles got deflected from their paths on small angles
- Very few alpha particles got deflected from their paths on very large angles
<h3>Results of the experiment:</h3>
- Most of the space inside an atom is empty
- The center of the atom is occupied by a tiny positively charged dense body called a nucleus. Most of the mass of the atom is concentrated in the nucleus
- The electrons revolve around the nucleus in circular orbits and are called planetary electrons
Thus, the results of the experiment were surprising due to the above-stated facts.
Learn more about Rutherford's Gold Foil experiment:
brainly.com/question/4113533
#SPJ4
Answer:
copper will reach to higher temperature first.
Explanation:
Answer:
Mass gallium (Ga°(s)) produced ≅ 0.800 grams (1 sig. fig.)
Explanation:
Ga(OH)₃ => Ga⁺³ + 3OH⁻
Ga⁺³ + 3e⁻ => Ga°(s)
? grams Ga°(s) = 0.680 Amps x 1 mole e⁻/1 Faraday x 1 Faraday/96,500 Amp·sec x 1 mole Ga°/3 moles e⁻ x 69.723 grams Ga°/mole Ga° x 60 sec/1 min x 80 min = [(0.680)(69.723)(60)(80)/(96,500)(3)] grams Ga° = 0.786099731 grams Ga° (calc. ans.) ≅ 0.800 grams Ga° (1 sig. fig.)
Answer:
así que busca, pero la respuesta está en por cierto Explanation: