It is also called free fall acceleration
Hope this helps
Plz mark as brainliest
Answer:
The answer is number 4. asI think
Disruption of axonal transport would be a good target for his drug.
<h3>What is disruption of axonal transport?</h3>
- Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS).
- Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS.
- Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias.
- The neurotoxin β,β′-iminodipropionitrile (IDPN) selectively disrupts slow axonal transport without affecting fast anterograde or retrograde axonal transport.
- Impairment of slow axonal transport causes a proximal accumulation of neurofilaments.
- Because neurofilaments regulate axonal diameter, this accumulation leads to a marked swelling of the axon.
- Acrylamide causes decreased axonal transport, also causing proximal accumulations of neurofilaments and swelling.
To learn more about axonal transport,
brainly.com/question/10600853
#SPJ4
Answer:
Embryology is defined as the branch of biology and medicine that studies embryos and how they develop. The study of how human embryos develop from fertilization to birth is an example of embryology.
Explanation:
Temperature affects spermatogenesis, which functions best at body temperatures just a little lower than those.
<h3>Abstract:</h3>
To keep testicular temperatures below those of the body core, adequate thermoregulation is essential. The process of mammalian spermatogenesis and the resulting spermatozoa are negatively impacted by elevated testicular temperature. Therefore, sperm quality can be affected and the likelihood of infertility is increased by thermoregulatory dysfunction resulting in heat stress. This article reviews a variety of internal and external factors that may lead to testicular heat stress. We go into more detail on how heat stress affects the spermatogenesis process, the resulting epididymal spermatozoa, germ cells, and the alterations that result in the testis.
We also go over the chemical reactions of germ cells to heat exposure and potential processes, such as apoptosis, DNA damage, and autophagy, that could lead to heat-induced germ cell damage. Further explanation is provided for the intrinsic and extrinsic processes involved in the complex mechanism of germ cell death. These intricate apoptotic pathways ultimately result in the demise of germ cells.
Learn more about spermatogenesis here:
brainly.com/question/1594056
#SPJ4