The equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x
<h3>How to evaluate the expression?</h3>
The expression is given as:
(8x)^-2/3 * (27x)^-1/3
Evaluate the exponent 8^-2/3
(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * (27x)^-1/3
Evaluate the exponent (27x)^-1/3
(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * 1/3(x)^-1/3
Multiply 1/4 and 1/3
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^-2/3 * (x)^-1/3
Evaluate the exponent
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-2/3 -1/3)
This gives
(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-1)
So, we have
(8x)^-2/3 * (27x)^-1/3 = 1/12x
Hence, the equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x
Read more about equivalent expression at
brainly.com/question/2972832
#SPJ1
Here you go enjoy
Have a good rest of your night
Answer:
2/5 or .4
Step-by-step explanation:
basically look at the points where the line meets the graph. two points would be 0,20 and 50,40. then count the amount that it changes vertically and then horizontally. +20vertical +50 horizonal giving the slope 20/50. this can then be simplified to 2/5 or the equivalent number .4
The product of (x1)^2 is 20