Answer:
joules
Explanation:
it is the measurement of energy
Answer:
C. 0.4.
Explanation:
<em>∵ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) = (no. of moles acetic acid)/(no. of moles of acetic acid + no. of moles of water).</em>
<em></em>
- no. of moles of acetic acid = 2, no. of moles of water = 3.
- Total no. of moles = no. of moles of acetic acid + no. of moles of water = 2 + 3 = 5.
<em>∴ mole fraction of acetic acid (X acetic acid) = (no. of moles acetic acid)/(total no. of moles) =</em> (2)/(5)<em> = 0.4.</em>
Answer:J.J. Thomson, he was using a high-vacuum cathode-ray tube
Explanation:(I Googled it)
Answer:
A. there is an isotope of lanthanum with an atomic mass of 138.9
Explanation:
By knowing the different atomic masses of both Lanthanum atoms, we can not tell anything about their occurence in nature. Therefore, all the last three options are incorrect. Because, the atomic mass does not tell anything about the availability or natural abundance of an element.
Now, the isotopes of an element are those elements, which have same number of electrons and protons as the original element, but different number of neutrons. Therefore, they have same atomic number but, different atomic weight or atomic masses.
Hence, by looking at an elements having same atomic number, but different atomic masses, we can identify them as isotopes.
Thus, the correct option is:
<u>A. there is an isotope of lanthanum with an atomic mass of 138.9.</u>
Answer:
1.811 g
Explanation:
The computation of the mass need to use to make the solution is shown below:
We know that molarity is

So,


= 0.031 moles
Now

where,
The Molecular weight of NaCl is 58.44 g/mole
And, the moles are 0.031 moles
So, the mass of NaCL is

= 1.811 g
We simply applied the above formulas