The boiling point is defined as the temperature at which the vapor pressure of a given liquid becomes equal to the external pressure or atmospheric pressure. Boiling point is mainly effected by following factors:
1) Inter-Molecular Interactions:
Greater the intermolecular interactions greater will be the boiling point because more energy is required to overcome these intermolecular interactions.
Example:
Water = 100 °C
Diethyl ether = 34.5 °C
Water requires more energy because it contains hydrogen bond interactions which are considered the strongest intermolecular interactions. While, Diethyl ether lacks Hydrogen bondings.
2) External Pressure:
The boiling point also varies with changing the external pressure for the same solvent. Greater the external pressure greater will be the boiling points and <em>vice versa</em>.
<span>At higher altitudes (and thus lower atmospheric pressures), water boils at a lower temperature. This is because the lack of vapor pressure at that altitude doesn't constrain the speed of the molecules with barometric pressure. Therefore, the water begins boiling at a lower temperature. This is often a disadvantage because even if the water is boiling, it won't be hot enough for meals (which is why heat and temperature are distinct). That's why we have pressure cookers, which manage to keep a stable boiling point. Did that help?</span>
None of the questions asked can be answered completely from the graph provided (GHG emissions: Direct, indirect and total Vs Year)
Reason: 1) Question A:<span>What caused a drop in GHG emissions around 2009?. This questions in pointing towards reason for drop of GHG emission around 2009. From the graph, it can be seen that there is a drop in GHG emission around 2009. However, information for reason for this drop is not available in graph. 2) Question B: </span>Did GHG emissions cause the melting of Arctic glaciers?. As mentioned earlier, the graph plotted provides information of GHG emissions: Vs Year. Information related to impact of GHG on environment is not available in graph. 3) Question C: <span>How much methane was emitted by homes between 1990 and 2000?. Graph provides information of direct and indirect emission for GHG. However, it lacks information about emission from residential or industrial sources. 4) </span>Question D: <span>Does industrial equipment release gases other than greenhouse gases?: Present study doesnot cover type of gases emitted from industrial equipment. 5) </span>Question E: <span>Which types of industries were included in the study?: Present graph has not specific information related to industries. </span>