<span>To solve this exercise you need to know that to create CO₂ with C₂H₂ is necessary to have oxygen. So, the following balanced equation represents the reaction:
2C₂H₂(g) + 5O₂(g) → 4CO₂(g) + 2H₂O(g)
Notice that 2 moles of C₂H₂ form 4 moles of </span><span>CO₂, so if </span>3.3 moles of C₂H₂ react, how many moles of CO2 would be produced?
2 moles <span>of C₂H₂ -------</span>4 moles of <span>CO₂
3.3 </span><span>moles <span>of C₂H₂--------x moles of CO₂
x=6.6 </span></span><span>moles of CO₂ produced.</span>
Answer: The correct answer is A. 11.5 atm. The temperature is held constant at 293 K, therefore, we can use Boyle's Law to determine the initial pressure. Boyle's Law states that there is an inverse relationship between pressure and volume of gases. Therefore, as volume increases, the pressure will decrease and vice versa.
Further Explanation:
Boyle's Law can be mathematically expressed as:

In this problem, we are given the values:
P(initial) = ?
V(initial) = 80 L
P (final) = 0.46 atm
V (final) = 2000 L
Plugging in these values into the equation:

The initial pressure was 11.5 atm. Since the volume increased or expanded, the space where the gas particles move is bigger, so the frequency of collisions with the wall of the container and with other particles are effectively decreased. This, therefore, decreases the pressure from 11.5 to 0.46 atm.
Learn More
- Learn about Charles' Law brainly.com/question/1421697
- Learn about Ideal Gas Law brainly.com/question/6534668
- Learn about Gay - Lusaac's Law brainly.com/question/1358307
Keywords: gas, Boyle's Law, Ideal Gas Law
A water molecule, because of its shape, is a polar molecule.
Element name = <u>strontium</u>
The answer is (3) moles of solute per liter of solution. That is what the definition of molarity of a solution means. The equation is concentration = mol number of solute/ volume of solution.